DSGN2
DSGN2 copied to clipboard
Incorrect checkpoint results
Hi authors,
Thank you for your amazing work. I have been trying to verify the checkpoint results but unfortunately I'm getting some unexpected results.
`Car [email protected], 0.70, 0.70: bbox AP:27.2850, 22.1567, 15.7245 bev AP:19.3694, 14.8054, 14.6355 3d AP:10.7381, 9.0909, 9.0909 aos AP:23.12, 18.91, 14.14 Car [email protected], 0.70, 0.70: bbox AP:21.2188, 15.2842, 13.2074 bev AP:16.5121, 11.5316, 9.7222 3d AP:3.4522, 2.3132, 2.1522 aos AP:17.10, 12.06, 10.29 Car [email protected], 0.50, 0.50: bbox AP:27.2850, 22.1567, 15.7245 bev AP:40.3225, 25.3175, 25.2042 3d AP:29.5763, 23.2644, 16.2642 aos AP:23.12, 18.91, 14.14 Car [email protected], 0.50, 0.50: bbox AP:21.2188, 15.2842, 13.2074 bev AP:34.8517, 24.6689, 18.0450 3d AP:26.6140, 18.2151, 14.1654 aos AP:17.10, 12.06, 10.29 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00
2023-08-03 18:48:56,428 INFO ---- 2d box evaluation ---- 2023-08-03 18:50:14,761 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000`
Any idea as to where I could be going wrong with the evaluation code?
It looks like you did not load the model weight well. Please check the output result txt first. And then check if the model weights are loaded well.
It looks like you did not load the model weight well. Please check the output result txt first. And then check if the model weights are loaded well.
Hello there, I also have the same problem these days. I use the default dsgn2.ymal config file and load your pre-trained models of DSGN2 Please explain a bit about how to load the model weights correctly. Thanks
Hi, can you show me the inference results and the log? In my old environment the results should be correct. Note that there could be some warning during loading the weight (ignore it, you might refer https://github.com/chenyilun95/DSGN2/issues/11)
Yes, I attach the evaluation log info below:
2023-12-11 14:42:12,065 INFO Start logging
2023-12-11 14:42:12,065 INFO CUDA_VISIBLE_DEVICES=ALL
2023-12-11 14:42:12,065 INFO eval output dir: /workspace/Dataset/dsgn2_ep58.pth.eval/eval/epoch_58/val/default
2023-12-11 14:42:12,065 INFO cfg_file /workspace/Dataset/DSGN2/configs/stereo/kitti_models/dsgn2.yaml
2023-12-11 14:42:12,065 INFO batch_size 1
2023-12-11 14:42:12,065 INFO workers 2
2023-12-11 14:42:12,065 INFO exp_name default
2023-12-11 14:42:12,065 INFO eval_tag default
2023-12-11 14:42:12,065 INFO max_waiting_mins 30
2023-12-11 14:42:12,065 INFO save_to_file True
2023-12-11 14:42:12,065 INFO ckpt /workspace/Dataset/dsgn2_ep58.pth
2023-12-11 14:42:12,065 INFO ckpt_id None
2023-12-11 14:42:12,065 INFO start_epoch 0
2023-12-11 14:42:12,065 INFO launcher none
2023-12-11 14:42:12,065 INFO tcp_port 18888
2023-12-11 14:42:12,065 INFO local_rank 0
2023-12-11 14:42:12,065 INFO set_cfgs None
2023-12-11 14:42:12,065 INFO trainval False
2023-12-11 14:42:12,065 INFO imitation 2d
2023-12-11 14:42:12,065 INFO cfg.ROOT_DIR: /workspace/Dataset/DSGN2
2023-12-11 14:42:12,065 INFO cfg.LOCAL_RANK: 0
2023-12-11 14:42:12,065 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2023-12-11 14:42:12,065 INFO
cfg.DATA_CONFIG = edict()
2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.DATASET: StereoKittiDataset
2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.DATA_PATH: ./data/kitti
2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.FLIP: True
2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.FORCE_FLIP: False
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [2, -30.4, -3, 59.6, 30.4, 1]
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.VOXEL_SIZE: [0.05, 0.05, 0.1]
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.STEREO_VOXEL_SIZE: [0.2, 0.2, 0.2]
2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.INFO_PATH = edict()
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl']
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl']
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.USE_VAN: True
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.USE_PERSON_SITTING: True
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.BOXES_GT_IN_CAM2_VIEW: False
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.GENERATE_CORNER_HEATMAP: False
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.CAT_REFLECT_DIM: False
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.TRAIN_DATA_AUGMENTOR: [{'NAME': 'gt_sampling', 'ratio': 0.9, 'USE_ROAD_PLANE': True, 'DB_INFO_PATH': ['stereo_kitti_dbinfos_train.pkl'], 'PREPARE': {'filter_by_min_points': ['Car:5', 'Pedestrian:5', 'Cyclist:5'], 'filter_by_difficulty': [-1]}, 'SAMPLE_GROUPS': ['Car:7', 'Pedestrian:7', 'Cyclist:7'], 'NUM_POINT_FEATURES': 4, 'DATABASE_WITH_FAKELIDAR': False, 'REMOVE_EXTRA_WIDTH': [0.0, 0.0, 0.0], 'LIMIT_WHOLE_SCENE': True, 'filter_occlusion_overlap': 0.7, 'remove_overlapped': True}, {'NAME': 'random_flip'}, {'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1248}, {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.1, 0.1]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.97, 1.03]}]
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.TEST_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1248}]
2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z']
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z']
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.05, 0.05, 0.1], 'MAX_POINTS_PER_VOXEL': 5, 'MAX_NUMBER_OF_VOXELS': {'train': 40000, 'test': 40000}}]
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.BASE_CONFIG: ./configs/stereo/dataset_configs/kitti_dataset_fused.yaml
2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.later_flip: True
2023-12-11 14:42:12,066 INFO
cfg.MODEL = edict()
2023-12-11 14:42:12,066 INFO cfg.MODEL.NAME: stereo
2023-12-11 14:42:12,066 INFO cfg.MODEL.SYNC_BN: True
2023-12-11 14:42:12,066 INFO
cfg.MODEL.BACKBONE_3D = edict()
2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.NAME: DSGN2Backbone
2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.maxdisp: 288
2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.downsample_disp: 4
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.GN: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.cat_img_feature: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.cat_right_img_feature: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.voxel_occupancy: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.front_surface_depth: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs: 1
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs_hg: 1
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.drop_psv: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.drop_psv_loss: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.squeeze_geo: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.geometry_volume_shift: 1
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.inv_smooth_psv: 0.1
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.inv_smooth_geo: 0.1
2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_backbone = edict()
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.type: ResNet
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.depth: 34
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_stages: 4
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.out_indices: [0, 1, 2, 3]
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.frozen_stages: -1
2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg = edict()
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.type: BN
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.requires_grad: True
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_eval: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.style: pytorch
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.with_max_pool: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.deep_stem: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.block_with_final_relu: False
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.base_channels: 64
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.strides: [1, 2, 1, 1]
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.dilations: [1, 1, 2, 4]
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_channels_factor: [1, 2, 2, 2]
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone_pretrained: torchvision://resnet34
2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_neck = edict()
2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_neck.GN: False
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.drop_psv: False
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.in_dims: [3, 64, 128, 128, 128]
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.start_level: 2
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.stereo_dim: [128, 96]
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv: True
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv_voxel: True
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.upconv_type: catk3
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_img_feature: True
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_right_img_feature: True
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.sem_dim: [128, 96]
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_sem_neck: True
2023-12-11 14:42:12,068 INFO
cfg.MODEL.BACKBONE_3D.sem_neck = edict()
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.type: FPN
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.in_channels: [96]
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.out_channels: 64
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.start_level: 0
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.add_extra_convs: on_output
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.num_outs: 5
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.cost_volume: [{'type': 'concat', 'downsample': 4}]
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.cv_dim: 32
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.rpn3d_dim: 32
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.downsampled_depth_offset: 0.5
2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.num_hg: 0
2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D = edict()
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.NAME: MMDet2DHead
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.use_3d_center: True
2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg = edict()
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.type: ATSSAdvHead
2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg = edict()
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg.type: BN
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg.requires_grad: True
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.reg_class_agnostic: False
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.seperate_extra_reg_branch: False
2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_classes: 3
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.in_channels: 64
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.stacked_convs: 4
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.feat_channels: 64
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.type: AnchorGenerator
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.ratios: [1.0]
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.octave_base_scale: 16
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.scales_per_octave: 1
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.strides: [4, 8, 16, 32, 64]
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_extra_reg_channel: 0
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.type: DeltaXYWHBBoxCoder
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_means: [0.0, 0.0, 0.0, 0.0]
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_stds: [0.1, 0.1, 0.2, 0.2]
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.type: FocalLoss
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.use_sigmoid: True
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.gamma: 2.0
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.alpha: 0.25
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.loss_weight: 1.0
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.type: GIoULoss
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.loss_weight: 2.0
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.type: CrossEntropyLoss
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.use_sigmoid: True
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.loss_weight: 1.0
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg = edict()
2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner = edict()
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.type: ATSS3DCenterAssigner
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.topk: 9
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.allowed_border: -1
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.pos_weight: -1
2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.append_3d_centers: True
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.debug: False
2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg = edict()
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms_pre: 1000
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.min_bbox_size: 0
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.score_thr: 0.05
2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms = edict()
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.type: nms
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.iou_threshold: 0.6
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.max_per_img: 100
2023-12-11 14:42:12,070 INFO
cfg.MODEL.MAP_TO_BEV = edict()
2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.NAME: HeightCompression
2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160
2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.SPARSE_INPUT: False
2023-12-11 14:42:12,070 INFO
cfg.MODEL.BACKBONE_2D = edict()
2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.NAME: HgBEVBackbone
2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.num_channels: 64
2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.GN: False
2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD = edict()
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NAME: DetHead
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NUM_CONVS: 2
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.GN: False
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.CLAMP_VALUE: 10.0
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.xyz_for_angles: True
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.hwl_for_angles: True
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.do_feature_imitation: False
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.imitation_cfg: [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}]
2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.div_by_diagonal: True
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_corners: False
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_tanh: False
2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.REG_LOSS_TYPE: WeightedSmoothL1Loss
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IOU_LOSS_TYPE: IOU3dLoss
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IMITATION_LOSS_TYPE: WeightedL2WithSigmaLoss
2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 0.5
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.iou_weight: 1.0
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.imitation_weight: 1.0
2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2023-12-11 14:42:12,071 INFO
cfg.MODEL.DEPTH_LOSS_HEAD = edict()
2023-12-11 14:42:12,071 INFO
cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE.ce: 1.0
2023-12-11 14:42:12,071 INFO cfg.MODEL.DEPTH_LOSS_HEAD.WEIGHTS: [1.0]
2023-12-11 14:42:12,071 INFO
cfg.MODEL.POST_PROCESSING = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
2023-12-11 14:42:12,071 INFO
cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict()
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: True
2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.25
2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
2023-12-11 14:42:12,072 INFO
cfg.OPTIMIZATION = edict()
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 1
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 60
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.OPTIMIZER: adamw
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR: 0.001
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [50]
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_WARMUP: True
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2023-12-11 14:42:12,072 INFO cfg.TAG: dsgn2
2023-12-11 14:42:12,072 INFO cfg.EXP_GROUP_PATH: workspace_Dataset_DSGN2_configs_stereo_kitti_models
2023-12-11 14:42:12,105 INFO Loading KITTI dataset
2023-12-11 14:42:12,184 INFO Total samples for KITTI dataset: 3769
2023-12-11 14:42:13,657 INFO ==> (Stereo) Loading parameters from checkpoint /workspace/Dataset/dsgn2_ep58.pth to GPU
2023-12-11 14:42:14,916 INFO ==> Done (loaded 490/490)
2023-12-11 14:42:14,932 INFO *************** EPOCH 58 EVALUATION *****************
2023-12-11 15:01:21,123 INFO *************** Performance of EPOCH 58 *****************
2023-12-11 15:01:21,123 INFO Generate label finished(sec_per_example: 0.3041 second).
2023-12-11 15:01:21,124 INFO recall_roi_0.3: 0.000000
2023-12-11 15:01:21,124 INFO recall_rcnn_0.3: 0.123818
2023-12-11 15:01:21,124 INFO recall_roi_0.5: 0.000000
2023-12-11 15:01:21,124 INFO recall_rcnn_0.5: 0.104340
2023-12-11 15:01:21,124 INFO recall_roi_0.7: 0.000000
2023-12-11 15:01:21,124 INFO recall_rcnn_0.7: 0.035881
2023-12-11 15:01:21,124 INFO depth_error_all_local_median: 0.994070
2023-12-11 15:01:21,124 INFO depth_error_all_local_0.2m: 0.812193
2023-12-11 15:01:21,124 INFO depth_error_all_local_0.4m: 0.674763
2023-12-11 15:01:21,124 INFO depth_error_all_local_0.8m: 0.526444
2023-12-11 15:01:21,125 INFO depth_error_all_local_1.6m: 0.390836
2023-12-11 15:01:21,136 INFO depth_error_fg_local_statistics_perbox_err_median: 3.380206
2023-12-11 15:01:21,147 INFO depth_error_fg_local_statistics_perbox_err_0.2m: 0.760238
2023-12-11 15:01:21,154 INFO depth_error_fg_local_statistics_perbox_err_0.4m: 0.622323
2023-12-11 15:01:21,162 INFO depth_error_fg_local_statistics_perbox_err_0.8m: 0.505881
2023-12-11 15:01:21,170 INFO depth_error_fg_local_statistics_perbox_err_1.6m: 0.431304
2023-12-11 15:01:21,179 INFO Average predicted number of objects(3769 samples): 0.716
2023-12-11 15:01:21,507 INFO ---- 3d box evaluation ----
2023-12-11 15:01:34,395 INFO Car [email protected], 0.70, 0.70:
bbox AP:27.4231, 22.1915, 15.7245
bev AP:19.2701, 14.7917, 14.6417
3d AP:10.7169, 9.0909, 9.0909
aos AP:23.24, 18.95, 14.14
Car [email protected], 0.70, 0.70:
bbox AP:21.2600, 15.3158, 13.2495
bev AP:16.4342, 11.4518, 9.6679
3d AP:3.3553, 2.2894, 2.1223
aos AP:17.18, 12.10, 10.34
Car [email protected], 0.50, 0.50:
bbox AP:27.4231, 22.1915, 15.7245
bev AP:40.3457, 25.3265, 25.1971
3d AP:29.5156, 23.2514, 16.2745
aos AP:23.24, 18.95, 14.14
Car [email protected], 0.50, 0.50:
bbox AP:21.2600, 15.3158, 13.2495
bev AP:34.8907, 22.4836, 18.0368
3d AP:26.6725, 18.2056, 14.1679
aos AP:17.18, 12.10, 10.34
Pedestrian [email protected], 0.50, 0.50:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Pedestrian [email protected], 0.50, 0.50:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Pedestrian [email protected], 0.25, 0.25:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Pedestrian [email protected], 0.25, 0.25:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Cyclist [email protected], 0.50, 0.50:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Cyclist [email protected], 0.50, 0.50:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Cyclist [email protected], 0.25, 0.25:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
Cyclist [email protected], 0.25, 0.25:
bbox AP:0.0000, 0.0000, 0.0000
bev AP:0.0000, 0.0000, 0.0000
3d AP:0.0000, 0.0000, 0.0000
aos AP:0.00, 0.00, 0.00
2023-12-11 15:01:34,400 INFO ---- 2d box evaluation ---- 2023-12-11 15:02:05,997 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000
Thanks!
- Can you check the KITTI output results like 000001.txt and let me know what the detected bounding boxes are inside?
- Did you match the pytorch and spconv environment? And some people get some problems with spconv version.
- Can you train the model in your machine and verify the results? I do not have the KITTI dataset on my machine right now so it takes time for me to check the pre-trained checkpoints.
Thanks for the info~
- Can you check the KITTI output results like 000001.txt and let me know what the detected bounding boxes are inside?
Nothing inside the default/final_result/data/000001.txt (No bounding boxes)
- Did you match the pytorch and spconv environment? And some people get some problems with spconv version.
addict 2.4.0
backcall 0.2.0
beautifulsoup4 4.9.3
certifi 2020.6.20
cffi 1.14.0
chardet 3.0.4
cmake 3.27.9
conda 4.9.1
conda-build 3.20.5
conda-package-handling 1.7.0
contourpy 1.1.1
cryptography 2.9.2
cycler 0.12.1
Cython 3.0.6
dataclasses 0.6
decorator 4.4.2
dnspython 2.0.0
easydict 1.11
filelock 3.0.12
fonttools 4.46.0
future 0.18.2
glob2 0.7
idna 2.9
imageio 2.33.1
importlib-metadata 7.0.0
importlib-resources 6.1.1
ipython 7.18.1
ipython-genutils 0.2.0
jedi 0.17.2
Jinja2 2.11.2
kiwisolver 1.4.5
lazy-loader 0.3
libarchive-c 2.9
liga 0.1.0+aee3731 /workspace/Dataset/LIGA-Stereo
llvmlite 0.36.0
MarkupSafe 1.1.1
matplotlib 3.7.4
mkl-fft 1.2.0
mkl-random 1.1.1
mkl-service 2.3.0
mmcv-full 1.4.0
mmdet 2.22.0 /workspace/Dataset/LIGA-Stereo/mmdetection_kitti
networkx 3.1
numba 0.53.0
numpy 1.22.0
olefile 0.46
opencv-python 4.8.1.78
packaging 23.2
parso 0.7.0
pcdet 0.1.0+a904f61 /workspace/Dataset/DSGN2
pexpect 4.8.0
pickleshare 0.7.5
Pillow 10.1.0
pip 20.0.2
pkginfo 1.6.0
platformdirs 4.1.0
prompt-toolkit 3.0.8
protobuf 4.25.1
psutil 5.7.2
ptyprocess 0.6.0
pycocotools 2.0.7
pycosat 0.6.3
pycparser 2.20
Pygments 2.7.1
pyOpenSSL 19.1.0
pyparsing 3.1.1
PySocks 1.7.1
python-dateutil 2.8.2
python-etcd 0.4.5
pytz 2020.1
PyWavelets 1.4.1
PyYAML 5.3.1
requests 2.23.0
ruamel-yaml 0.15.87
scikit-image 0.21.0
scipy 1.10.1
setuptools 46.4.0.post20200518
six 1.14.0
soupsieve 2.0.1
spconv 1.2.1
tensorboardX 2.6.2.2
terminaltables 3.1.10
tifffile 2023.7.10
tomli 2.0.1
torch 1.7.0
torchelastic 0.2.1
torchvision 0.8.0
tqdm 4.46.0
traitlets 5.0.5
typing-extensions 3.7.4.3
urllib3 1.25.8
wcwidth 0.2.5
wheel 0.34.2
yapf 0.40.2
zipp 3.17.0
The pytorch version ==1.7.0 and the spconv version ==1.2.1
- Can you train the model in your machine and verify the results? I do not have the KITTI dataset on my machine right now so it takes time for me to check the pre-trained checkpoints.
I am training the model on one 3090ti with batch_size == 1, it still needs two days. I will update the result here.
- Are there any detected bounding boxes in the 000xxx.txt?
- Cool, you can check the intermediate results like epoch-10, which should yield reasonable performance (>5 AP_CAR).
Are there any detected bounding boxes in the 000xxx.txt?
Yes, for example:
In 000004.txt: Car -1 -1 -7.4348 278.6960 178.8151 349.5790 215.2029 1.785065 1.764839 4.631009 -15.715478 2.122239 38.505917 -7.822333 0.21516302
Cool, you can check the intermediate results like epoch-10, which should yield reasonable performance (>5 AP_CAR).
I have tested the 34-epoch, the result likes below:
2023-12-13 10:45:00,225 INFO *************** Performance of EPOCH 34 ***************** 2023-12-13 10:45:00,225 INFO Generate label finished(sec_per_example: 0.3142 second). 2023-12-13 10:45:00,225 INFO recall_roi_0.3: 0.000000 2023-12-13 10:45:00,225 INFO recall_rcnn_0.3: 0.853229 2023-12-13 10:45:00,225 INFO recall_roi_0.5: 0.000000 2023-12-13 10:45:00,226 INFO recall_rcnn_0.5: 0.753446 2023-12-13 10:45:00,226 INFO recall_roi_0.7: 0.000000 2023-12-13 10:45:00,226 INFO recall_rcnn_0.7: 0.493849 2023-12-13 10:45:00,226 INFO depth_error_all_local_median: 0.109514 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.2m: 0.335280 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.4m: 0.207142 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.8m: 0.130046 2023-12-13 10:45:00,226 INFO depth_error_all_local_1.6m: 0.084545 2023-12-13 10:45:00,235 INFO depth_error_fg_local_statistics_perbox_err_median: 0.658179 2023-12-13 10:45:00,243 INFO depth_error_fg_local_statistics_perbox_err_0.2m: 0.518299 2023-12-13 10:45:00,249 INFO depth_error_fg_local_statistics_perbox_err_0.4m: 0.325645 2023-12-13 10:45:00,254 INFO depth_error_fg_local_statistics_perbox_err_0.8m: 0.191848 2023-12-13 10:45:00,259 INFO depth_error_fg_local_statistics_perbox_err_1.6m: 0.123333 2023-12-13 10:45:00,267 INFO Average predicted number of objects(3769 samples): 13.574 2023-12-13 10:45:00,619 INFO ---- 3d box evaluation ---- /opt/conda/lib/python3.8/site-packages/numba/core/typed_passes.py:326: NumbaPerformanceWarning: The keyword argument 'parallel=True' was specified but no transformation for parallel execution was possible.
To find out why, try turning on parallel diagnostics, see https://numba.pydata.org/numba-doc/latest/user/parallel.html#diagnostics for help.
File "pcdet/datasets/kitti/kitti_object_eval_python/eval.py", line 160: @numba.jit(nopython=True, parallel=True) def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1): ^
warnings.warn(errors.NumbaPerformanceWarning(msg, /opt/conda/lib/python3.8/site-packages/numba/core/typed_passes.py:326: NumbaPerformanceWarning: The keyword argument 'parallel=True' was specified but no transformation for parallel execution was possible.
To find out why, try turning on parallel diagnostics, see https://numba.pydata.org/numba-doc/latest/user/parallel.html#diagnostics for help.
File "pcdet/datasets/kitti/kitti_object_eval_python/eval.py", line 160: @numba.jit(nopython=True, parallel=True) def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1): ^
warnings.warn(errors.NumbaPerformanceWarning(msg, 2023-12-13 10:45:27,724 INFO Car [email protected], 0.70, 0.70: bbox AP:97.2287, 90.0781, 88.7225 bev AP:88.5526, 76.0166, 68.7856 3d AP:79.1395, 66.1320, 58.5258 aos AP:97.04, 89.78, 88.05 Car [email protected], 0.70, 0.70: bbox AP:98.7335, 94.4128, 91.2468 bev AP:89.5465, 76.3046, 70.7628 3d AP:82.8323, 64.9919, 59.4407 aos AP:98.54, 94.05, 90.50 Car [email protected], 0.50, 0.50: bbox AP:97.2287, 90.0781, 88.7225 bev AP:96.9713, 89.6054, 87.2113 3d AP:90.8074, 89.1699, 84.4519 aos AP:97.04, 89.78, 88.05 Car [email protected], 0.50, 0.50: bbox AP:98.7335, 94.4128, 91.2468 bev AP:98.3775, 92.0581, 88.6882 3d AP:96.3894, 91.3967, 86.3852 aos AP:98.54, 94.05, 90.50 Pedestrian [email protected], 0.50, 0.50: bbox AP:45.4138, 39.5464, 36.9842 bev AP:30.2508, 26.1992, 24.3483 3d AP:25.8574, 22.3619, 20.4178 aos AP:20.07, 17.86, 16.87 Pedestrian [email protected], 0.50, 0.50: bbox AP:43.9603, 37.1875, 34.1949 bev AP:26.1509, 21.9390, 19.8038 3d AP:20.6679, 17.3777, 15.3087 aos AP:19.48, 16.83, 15.50 Pedestrian [email protected], 0.25, 0.25: bbox AP:45.4138, 39.5464, 36.9842 bev AP:49.1159, 43.0023, 39.5303 3d AP:49.0571, 42.9293, 39.4092 aos AP:20.07, 17.86, 16.87 Pedestrian [email protected], 0.25, 0.25: bbox AP:43.9603, 37.1875, 34.1949 bev AP:47.2879, 40.7037, 37.4303 3d AP:47.1765, 40.3084, 37.2881 aos AP:19.48, 16.83, 15.50 Cyclist [email protected], 0.50, 0.50: bbox AP:68.7559, 43.9899, 42.1120 bev AP:61.2625, 38.3186, 36.2334 3d AP:59.8401, 37.2659, 34.4511 aos AP:46.98, 30.67, 29.65 Cyclist [email protected], 0.50, 0.50: bbox AP:69.0910, 42.6764, 39.9248 bev AP:60.7892, 35.7985, 33.0912 3d AP:58.3736, 34.2494, 31.3953 aos AP:47.56, 29.96, 28.33 Cyclist [email protected], 0.25, 0.25: bbox AP:68.7559, 43.9899, 42.1120 bev AP:68.6062, 43.2530, 41.3012 3d AP:68.5538, 42.9903, 41.2211 aos AP:46.98, 30.67, 29.65 Cyclist [email protected], 0.25, 0.25: bbox AP:69.0910, 42.6764, 39.9248 bev AP:69.3643, 41.8688, 38.7695 3d AP:69.2159, 41.7177, 38.6152 aos AP:47.56, 29.96, 28.33
2023-12-13 10:45:27,732 INFO ---- 2d box evaluation ---- 2023-12-13 10:46:00,480 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000
2023-12-13 10:46:00,480 INFO Result is save to /workspace/Dataset/DSGN2/outputs/workspace_Dataset_DSGN2_configs_stereo_kitti_models/dsgn2.default/ckpt/checkpoint_epoch_34.pth.eval/eval/epoch_34/val/default 2023-12-13 10:46:00,480 INFO Evaluation done.*
The 3D evaluation looks good, but why the performance of the 2D bounding box prediction is 0?
Cool, the result looks normal.
The 2D bounding box results are referred to the box AP. For example,
Car [email protected], 0.70, 0.70: bbox AP:98.7335, 94.4128, 91.2468 bev AP:89.5465, 76.3046, 70.7628 3d AP:82.8323, 64.9919, 59.4407 aos AP:98.54, 94.05, 90.50
The 2D bbox AP_{0.7}_R40 (moderate) is 94.4, the BEV bbox AP_R40 is 76.3.
hello. Thank you for your amazing work. I'm having the exact same problem as @girish1511. @Blume95. Below I upload the “xxxxxx.txt” result I got. DSGN2-Output.zip This result was obtained using the official checkpoint. If you don't mind, can you provide reliable results (3769 txt files)? There is no problem with training and I can create the output, but I would like to use official output.
THANKS !!
Sorry that my machines have no the KITTI dataset right now. The official model is trained and inferenced with this code. Since you run the model, you can try training the model on your own and check the results after several epochs.
@chenyilun95 @Blume95 一样的问题...对官方的权重文件目前有解决的办法吗?或者有大佬可以提供一个训练过的文件吗?我只是想用测试一下结果,2080ti不太方便训练,谢谢!