DSGN2 icon indicating copy to clipboard operation
DSGN2 copied to clipboard

Incorrect checkpoint results

Open girish1511 opened this issue 1 year ago • 12 comments

Hi authors,

Thank you for your amazing work. I have been trying to verify the checkpoint results but unfortunately I'm getting some unexpected results.

`Car [email protected], 0.70, 0.70: bbox AP:27.2850, 22.1567, 15.7245 bev AP:19.3694, 14.8054, 14.6355 3d AP:10.7381, 9.0909, 9.0909 aos AP:23.12, 18.91, 14.14 Car [email protected], 0.70, 0.70: bbox AP:21.2188, 15.2842, 13.2074 bev AP:16.5121, 11.5316, 9.7222 3d AP:3.4522, 2.3132, 2.1522 aos AP:17.10, 12.06, 10.29 Car [email protected], 0.50, 0.50: bbox AP:27.2850, 22.1567, 15.7245 bev AP:40.3225, 25.3175, 25.2042 3d AP:29.5763, 23.2644, 16.2642 aos AP:23.12, 18.91, 14.14 Car [email protected], 0.50, 0.50: bbox AP:21.2188, 15.2842, 13.2074 bev AP:34.8517, 24.6689, 18.0450 3d AP:26.6140, 18.2151, 14.1654 aos AP:17.10, 12.06, 10.29 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00

2023-08-03 18:48:56,428 INFO ---- 2d box evaluation ---- 2023-08-03 18:50:14,761 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000`

Any idea as to where I could be going wrong with the evaluation code?

girish1511 avatar Aug 11 '23 18:08 girish1511

It looks like you did not load the model weight well. Please check the output result txt first. And then check if the model weights are loaded well.

chenyilun95 avatar Aug 12 '23 02:08 chenyilun95

It looks like you did not load the model weight well. Please check the output result txt first. And then check if the model weights are loaded well.

Hello there, I also have the same problem these days. I use the default dsgn2.ymal config file and load your pre-trained models of DSGN2 Please explain a bit about how to load the model weights correctly. Thanks

Blume95 avatar Dec 12 '23 10:12 Blume95

Hi, can you show me the inference results and the log? In my old environment the results should be correct. Note that there could be some warning during loading the weight (ignore it, you might refer https://github.com/chenyilun95/DSGN2/issues/11)

chenyilun95 avatar Dec 12 '23 13:12 chenyilun95

Yes, I attach the evaluation log info below:

2023-12-11 14:42:12,065 INFO Start logging 2023-12-11 14:42:12,065 INFO CUDA_VISIBLE_DEVICES=ALL 2023-12-11 14:42:12,065 INFO eval output dir: /workspace/Dataset/dsgn2_ep58.pth.eval/eval/epoch_58/val/default 2023-12-11 14:42:12,065 INFO cfg_file /workspace/Dataset/DSGN2/configs/stereo/kitti_models/dsgn2.yaml 2023-12-11 14:42:12,065 INFO batch_size 1 2023-12-11 14:42:12,065 INFO workers 2 2023-12-11 14:42:12,065 INFO exp_name default 2023-12-11 14:42:12,065 INFO eval_tag default 2023-12-11 14:42:12,065 INFO max_waiting_mins 30 2023-12-11 14:42:12,065 INFO save_to_file True 2023-12-11 14:42:12,065 INFO ckpt /workspace/Dataset/dsgn2_ep58.pth 2023-12-11 14:42:12,065 INFO ckpt_id None 2023-12-11 14:42:12,065 INFO start_epoch 0 2023-12-11 14:42:12,065 INFO launcher none 2023-12-11 14:42:12,065 INFO tcp_port 18888 2023-12-11 14:42:12,065 INFO local_rank 0 2023-12-11 14:42:12,065 INFO set_cfgs None 2023-12-11 14:42:12,065 INFO trainval False 2023-12-11 14:42:12,065 INFO imitation 2d 2023-12-11 14:42:12,065 INFO cfg.ROOT_DIR: /workspace/Dataset/DSGN2 2023-12-11 14:42:12,065 INFO cfg.LOCAL_RANK: 0 2023-12-11 14:42:12,065 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist'] 2023-12-11 14:42:12,065 INFO
cfg.DATA_CONFIG = edict() 2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.DATASET: StereoKittiDataset 2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.DATA_PATH: ./data/kitti 2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.FLIP: True 2023-12-11 14:42:12,065 INFO cfg.DATA_CONFIG.FORCE_FLIP: False 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [2, -30.4, -3, 59.6, 30.4, 1] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.VOXEL_SIZE: [0.05, 0.05, 0.1] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.STEREO_VOXEL_SIZE: [0.2, 0.2, 0.2] 2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.DATA_SPLIT = edict() 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val 2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.INFO_PATH = edict() 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl'] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl'] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.USE_VAN: True 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.USE_PERSON_SITTING: True 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.BOXES_GT_IN_CAM2_VIEW: False 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.GENERATE_CORNER_HEATMAP: False 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.CAT_REFLECT_DIM: False 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.TRAIN_DATA_AUGMENTOR: [{'NAME': 'gt_sampling', 'ratio': 0.9, 'USE_ROAD_PLANE': True, 'DB_INFO_PATH': ['stereo_kitti_dbinfos_train.pkl'], 'PREPARE': {'filter_by_min_points': ['Car:5', 'Pedestrian:5', 'Cyclist:5'], 'filter_by_difficulty': [-1]}, 'SAMPLE_GROUPS': ['Car:7', 'Pedestrian:7', 'Cyclist:7'], 'NUM_POINT_FEATURES': 4, 'DATABASE_WITH_FAKELIDAR': False, 'REMOVE_EXTRA_WIDTH': [0.0, 0.0, 0.0], 'LIMIT_WHOLE_SCENE': True, 'filter_occlusion_overlap': 0.7, 'remove_overlapped': True}, {'NAME': 'random_flip'}, {'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1248}, {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.1, 0.1]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.97, 1.03]}] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.TEST_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1248}] 2023-12-11 14:42:12,066 INFO
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict() 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z'] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z'] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.05, 0.05, 0.1], 'MAX_POINTS_PER_VOXEL': 5, 'MAX_NUMBER_OF_VOXELS': {'train': 40000, 'test': 40000}}] 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.BASE_CONFIG: ./configs/stereo/dataset_configs/kitti_dataset_fused.yaml 2023-12-11 14:42:12,066 INFO cfg.DATA_CONFIG.later_flip: True 2023-12-11 14:42:12,066 INFO
cfg.MODEL = edict() 2023-12-11 14:42:12,066 INFO cfg.MODEL.NAME: stereo 2023-12-11 14:42:12,066 INFO cfg.MODEL.SYNC_BN: True 2023-12-11 14:42:12,066 INFO
cfg.MODEL.BACKBONE_3D = edict() 2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.NAME: DSGN2Backbone 2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.maxdisp: 288 2023-12-11 14:42:12,066 INFO cfg.MODEL.BACKBONE_3D.downsample_disp: 4 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.GN: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.cat_img_feature: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.cat_right_img_feature: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.voxel_occupancy: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.front_surface_depth: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs: 1 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs_hg: 1 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.drop_psv: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.drop_psv_loss: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.squeeze_geo: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.geometry_volume_shift: 1 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.inv_smooth_psv: 0.1 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.inv_smooth_geo: 0.1 2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_backbone = edict() 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.type: ResNet 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.depth: 34 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_stages: 4 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.out_indices: [0, 1, 2, 3] 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.frozen_stages: -1 2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg = edict() 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.type: BN 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.requires_grad: True 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_eval: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.style: pytorch 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.with_max_pool: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.deep_stem: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.block_with_final_relu: False 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.base_channels: 64 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.strides: [1, 2, 1, 1] 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.dilations: [1, 1, 2, 4] 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_channels_factor: [1, 2, 2, 2] 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_backbone_pretrained: torchvision://resnet34 2023-12-11 14:42:12,067 INFO
cfg.MODEL.BACKBONE_3D.feature_neck = edict() 2023-12-11 14:42:12,067 INFO cfg.MODEL.BACKBONE_3D.feature_neck.GN: False 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.drop_psv: False 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.in_dims: [3, 64, 128, 128, 128] 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.start_level: 2 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.stereo_dim: [128, 96] 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv: True 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv_voxel: True 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.upconv_type: catk3 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_img_feature: True 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_right_img_feature: True 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.sem_dim: [128, 96] 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_sem_neck: True 2023-12-11 14:42:12,068 INFO
cfg.MODEL.BACKBONE_3D.sem_neck = edict() 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.type: FPN 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.in_channels: [96] 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.out_channels: 64 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.start_level: 0 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.add_extra_convs: on_output 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.sem_neck.num_outs: 5 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.cost_volume: [{'type': 'concat', 'downsample': 4}] 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.cv_dim: 32 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.rpn3d_dim: 32 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.downsampled_depth_offset: 0.5 2023-12-11 14:42:12,068 INFO cfg.MODEL.BACKBONE_3D.num_hg: 0 2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D = edict() 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.NAME: MMDet2DHead 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.use_3d_center: True 2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg = edict() 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.type: ATSSAdvHead 2023-12-11 14:42:12,068 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg = edict() 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg.type: BN 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.norm_cfg.requires_grad: True 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.reg_class_agnostic: False 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.seperate_extra_reg_branch: False 2023-12-11 14:42:12,068 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_classes: 3 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.in_channels: 64 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.stacked_convs: 4 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.feat_channels: 64 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.type: AnchorGenerator 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.ratios: [1.0] 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.octave_base_scale: 16 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.scales_per_octave: 1 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.strides: [4, 8, 16, 32, 64] 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_extra_reg_channel: 0 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.type: DeltaXYWHBBoxCoder 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_means: [0.0, 0.0, 0.0, 0.0] 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_stds: [0.1, 0.1, 0.2, 0.2] 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.type: FocalLoss 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.use_sigmoid: True 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.gamma: 2.0 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.alpha: 0.25 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.loss_weight: 1.0 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.type: GIoULoss 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.loss_weight: 2.0 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.type: CrossEntropyLoss 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.use_sigmoid: True 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.loss_weight: 1.0 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg = edict() 2023-12-11 14:42:12,069 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner = edict() 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.type: ATSS3DCenterAssigner 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.topk: 9 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.allowed_border: -1 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.pos_weight: -1 2023-12-11 14:42:12,069 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.append_3d_centers: True 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.debug: False 2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg = edict() 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms_pre: 1000 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.min_bbox_size: 0 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.score_thr: 0.05 2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms = edict() 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.type: nms 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.iou_threshold: 0.6 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.max_per_img: 100 2023-12-11 14:42:12,070 INFO
cfg.MODEL.MAP_TO_BEV = edict() 2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.NAME: HeightCompression 2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160 2023-12-11 14:42:12,070 INFO cfg.MODEL.MAP_TO_BEV.SPARSE_INPUT: False 2023-12-11 14:42:12,070 INFO
cfg.MODEL.BACKBONE_2D = edict() 2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.NAME: HgBEVBackbone 2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.num_channels: 64 2023-12-11 14:42:12,070 INFO cfg.MODEL.BACKBONE_2D.GN: False 2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD = edict() 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NAME: DetHead 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NUM_CONVS: 2 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.GN: False 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.CLAMP_VALUE: 10.0 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.xyz_for_angles: True 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.hwl_for_angles: True 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.do_feature_imitation: False 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.imitation_cfg: [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}] 2023-12-11 14:42:12,070 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}] 2023-12-11 14:42:12,070 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder 2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.div_by_diagonal: True 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_corners: False 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_tanh: False 2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.REG_LOSS_TYPE: WeightedSmoothL1Loss 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IOU_LOSS_TYPE: IOU3dLoss 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IMITATION_LOSS_TYPE: WeightedL2WithSigmaLoss 2023-12-11 14:42:12,071 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 0.5 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.iou_weight: 1.0 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.imitation_weight: 1.0 2023-12-11 14:42:12,071 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 2023-12-11 14:42:12,071 INFO
cfg.MODEL.DEPTH_LOSS_HEAD = edict() 2023-12-11 14:42:12,071 INFO
cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE.ce: 1.0 2023-12-11 14:42:12,071 INFO cfg.MODEL.DEPTH_LOSS_HEAD.WEIGHTS: [1.0] 2023-12-11 14:42:12,071 INFO
cfg.MODEL.POST_PROCESSING = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7] 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti 2023-12-11 14:42:12,071 INFO
cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict() 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: True 2023-12-11 14:42:12,071 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu 2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.25 2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096 2023-12-11 14:42:12,072 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500 2023-12-11 14:42:12,072 INFO
cfg.OPTIMIZATION = edict() 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 1 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 60 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.OPTIMIZER: adamw 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR: 0.001 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [50] 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.LR_WARMUP: True 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1 2023-12-11 14:42:12,072 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10 2023-12-11 14:42:12,072 INFO cfg.TAG: dsgn2 2023-12-11 14:42:12,072 INFO cfg.EXP_GROUP_PATH: workspace_Dataset_DSGN2_configs_stereo_kitti_models 2023-12-11 14:42:12,105 INFO Loading KITTI dataset 2023-12-11 14:42:12,184 INFO Total samples for KITTI dataset: 3769 2023-12-11 14:42:13,657 INFO ==> (Stereo) Loading parameters from checkpoint /workspace/Dataset/dsgn2_ep58.pth to GPU 2023-12-11 14:42:14,916 INFO ==> Done (loaded 490/490) 2023-12-11 14:42:14,932 INFO *************** EPOCH 58 EVALUATION ***************** 2023-12-11 15:01:21,123 INFO *************** Performance of EPOCH 58 ***************** 2023-12-11 15:01:21,123 INFO Generate label finished(sec_per_example: 0.3041 second). 2023-12-11 15:01:21,124 INFO recall_roi_0.3: 0.000000 2023-12-11 15:01:21,124 INFO recall_rcnn_0.3: 0.123818 2023-12-11 15:01:21,124 INFO recall_roi_0.5: 0.000000 2023-12-11 15:01:21,124 INFO recall_rcnn_0.5: 0.104340 2023-12-11 15:01:21,124 INFO recall_roi_0.7: 0.000000 2023-12-11 15:01:21,124 INFO recall_rcnn_0.7: 0.035881 2023-12-11 15:01:21,124 INFO depth_error_all_local_median: 0.994070 2023-12-11 15:01:21,124 INFO depth_error_all_local_0.2m: 0.812193 2023-12-11 15:01:21,124 INFO depth_error_all_local_0.4m: 0.674763 2023-12-11 15:01:21,124 INFO depth_error_all_local_0.8m: 0.526444 2023-12-11 15:01:21,125 INFO depth_error_all_local_1.6m: 0.390836 2023-12-11 15:01:21,136 INFO depth_error_fg_local_statistics_perbox_err_median: 3.380206 2023-12-11 15:01:21,147 INFO depth_error_fg_local_statistics_perbox_err_0.2m: 0.760238 2023-12-11 15:01:21,154 INFO depth_error_fg_local_statistics_perbox_err_0.4m: 0.622323 2023-12-11 15:01:21,162 INFO depth_error_fg_local_statistics_perbox_err_0.8m: 0.505881 2023-12-11 15:01:21,170 INFO depth_error_fg_local_statistics_perbox_err_1.6m: 0.431304 2023-12-11 15:01:21,179 INFO Average predicted number of objects(3769 samples): 0.716 2023-12-11 15:01:21,507 INFO ---- 3d box evaluation ---- 2023-12-11 15:01:34,395 INFO Car [email protected], 0.70, 0.70: bbox AP:27.4231, 22.1915, 15.7245 bev AP:19.2701, 14.7917, 14.6417 3d AP:10.7169, 9.0909, 9.0909 aos AP:23.24, 18.95, 14.14 Car [email protected], 0.70, 0.70: bbox AP:21.2600, 15.3158, 13.2495 bev AP:16.4342, 11.4518, 9.6679 3d AP:3.3553, 2.2894, 2.1223 aos AP:17.18, 12.10, 10.34 Car [email protected], 0.50, 0.50: bbox AP:27.4231, 22.1915, 15.7245 bev AP:40.3457, 25.3265, 25.1971 3d AP:29.5156, 23.2514, 16.2745 aos AP:23.24, 18.95, 14.14 Car [email protected], 0.50, 0.50: bbox AP:21.2600, 15.3158, 13.2495 bev AP:34.8907, 22.4836, 18.0368 3d AP:26.6725, 18.2056, 14.1679 aos AP:17.18, 12.10, 10.34 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 bev AP:0.0000, 0.0000, 0.0000 3d AP:0.0000, 0.0000, 0.0000 aos AP:0.00, 0.00, 0.00

2023-12-11 15:01:34,400 INFO ---- 2d box evaluation ---- 2023-12-11 15:02:05,997 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000

Blume95 avatar Dec 12 '23 13:12 Blume95

Thanks!

  1. Can you check the KITTI output results like 000001.txt and let me know what the detected bounding boxes are inside?
  2. Did you match the pytorch and spconv environment? And some people get some problems with spconv version.
  3. Can you train the model in your machine and verify the results? I do not have the KITTI dataset on my machine right now so it takes time for me to check the pre-trained checkpoints.

chenyilun95 avatar Dec 13 '23 03:12 chenyilun95

Thanks for the info~

  1. Can you check the KITTI output results like 000001.txt and let me know what the detected bounding boxes are inside?

Nothing inside the default/final_result/data/000001.txt (No bounding boxes)

  1. Did you match the pytorch and spconv environment? And some people get some problems with spconv version.

addict 2.4.0
backcall 0.2.0
beautifulsoup4 4.9.3
certifi 2020.6.20
cffi 1.14.0
chardet 3.0.4
cmake 3.27.9
conda 4.9.1
conda-build 3.20.5
conda-package-handling 1.7.0
contourpy 1.1.1
cryptography 2.9.2
cycler 0.12.1
Cython 3.0.6
dataclasses 0.6
decorator 4.4.2
dnspython 2.0.0
easydict 1.11
filelock 3.0.12
fonttools 4.46.0
future 0.18.2
glob2 0.7
idna 2.9
imageio 2.33.1
importlib-metadata 7.0.0
importlib-resources 6.1.1
ipython 7.18.1
ipython-genutils 0.2.0
jedi 0.17.2
Jinja2 2.11.2
kiwisolver 1.4.5
lazy-loader 0.3
libarchive-c 2.9
liga 0.1.0+aee3731 /workspace/Dataset/LIGA-Stereo
llvmlite 0.36.0
MarkupSafe 1.1.1
matplotlib 3.7.4
mkl-fft 1.2.0
mkl-random 1.1.1
mkl-service 2.3.0
mmcv-full 1.4.0
mmdet 2.22.0 /workspace/Dataset/LIGA-Stereo/mmdetection_kitti networkx 3.1
numba 0.53.0
numpy 1.22.0
olefile 0.46
opencv-python 4.8.1.78
packaging 23.2
parso 0.7.0
pcdet 0.1.0+a904f61 /workspace/Dataset/DSGN2
pexpect 4.8.0
pickleshare 0.7.5
Pillow 10.1.0
pip 20.0.2
pkginfo 1.6.0
platformdirs 4.1.0
prompt-toolkit 3.0.8
protobuf 4.25.1
psutil 5.7.2
ptyprocess 0.6.0
pycocotools 2.0.7
pycosat 0.6.3
pycparser 2.20
Pygments 2.7.1
pyOpenSSL 19.1.0
pyparsing 3.1.1
PySocks 1.7.1
python-dateutil 2.8.2
python-etcd 0.4.5
pytz 2020.1
PyWavelets 1.4.1
PyYAML 5.3.1
requests 2.23.0
ruamel-yaml 0.15.87
scikit-image 0.21.0
scipy 1.10.1
setuptools 46.4.0.post20200518 six 1.14.0
soupsieve 2.0.1
spconv 1.2.1
tensorboardX 2.6.2.2
terminaltables 3.1.10
tifffile 2023.7.10
tomli 2.0.1
torch 1.7.0
torchelastic 0.2.1
torchvision 0.8.0
tqdm 4.46.0
traitlets 5.0.5
typing-extensions 3.7.4.3
urllib3 1.25.8
wcwidth 0.2.5
wheel 0.34.2
yapf 0.40.2
zipp 3.17.0 The pytorch version ==1.7.0 and the spconv version ==1.2.1

  1. Can you train the model in your machine and verify the results? I do not have the KITTI dataset on my machine right now so it takes time for me to check the pre-trained checkpoints.

I am training the model on one 3090ti with batch_size == 1, it still needs two days. I will update the result here.

Blume95 avatar Dec 13 '23 08:12 Blume95

  1. Are there any detected bounding boxes in the 000xxx.txt?
  2. Cool, you can check the intermediate results like epoch-10, which should yield reasonable performance (>5 AP_CAR).

chenyilun95 avatar Dec 13 '23 09:12 chenyilun95

Are there any detected bounding boxes in the 000xxx.txt?

Yes, for example:

In 000004.txt: Car -1 -1 -7.4348 278.6960 178.8151 349.5790 215.2029 1.785065 1.764839 4.631009 -15.715478 2.122239 38.505917 -7.822333 0.21516302

Cool, you can check the intermediate results like epoch-10, which should yield reasonable performance (>5 AP_CAR).

I have tested the 34-epoch, the result likes below:

2023-12-13 10:45:00,225 INFO *************** Performance of EPOCH 34 ***************** 2023-12-13 10:45:00,225 INFO Generate label finished(sec_per_example: 0.3142 second). 2023-12-13 10:45:00,225 INFO recall_roi_0.3: 0.000000 2023-12-13 10:45:00,225 INFO recall_rcnn_0.3: 0.853229 2023-12-13 10:45:00,225 INFO recall_roi_0.5: 0.000000 2023-12-13 10:45:00,226 INFO recall_rcnn_0.5: 0.753446 2023-12-13 10:45:00,226 INFO recall_roi_0.7: 0.000000 2023-12-13 10:45:00,226 INFO recall_rcnn_0.7: 0.493849 2023-12-13 10:45:00,226 INFO depth_error_all_local_median: 0.109514 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.2m: 0.335280 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.4m: 0.207142 2023-12-13 10:45:00,226 INFO depth_error_all_local_0.8m: 0.130046 2023-12-13 10:45:00,226 INFO depth_error_all_local_1.6m: 0.084545 2023-12-13 10:45:00,235 INFO depth_error_fg_local_statistics_perbox_err_median: 0.658179 2023-12-13 10:45:00,243 INFO depth_error_fg_local_statistics_perbox_err_0.2m: 0.518299 2023-12-13 10:45:00,249 INFO depth_error_fg_local_statistics_perbox_err_0.4m: 0.325645 2023-12-13 10:45:00,254 INFO depth_error_fg_local_statistics_perbox_err_0.8m: 0.191848 2023-12-13 10:45:00,259 INFO depth_error_fg_local_statistics_perbox_err_1.6m: 0.123333 2023-12-13 10:45:00,267 INFO Average predicted number of objects(3769 samples): 13.574 2023-12-13 10:45:00,619 INFO ---- 3d box evaluation ---- /opt/conda/lib/python3.8/site-packages/numba/core/typed_passes.py:326: NumbaPerformanceWarning: The keyword argument 'parallel=True' was specified but no transformation for parallel execution was possible.

To find out why, try turning on parallel diagnostics, see https://numba.pydata.org/numba-doc/latest/user/parallel.html#diagnostics for help.

File "pcdet/datasets/kitti/kitti_object_eval_python/eval.py", line 160: @numba.jit(nopython=True, parallel=True) def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1): ^

warnings.warn(errors.NumbaPerformanceWarning(msg, /opt/conda/lib/python3.8/site-packages/numba/core/typed_passes.py:326: NumbaPerformanceWarning: The keyword argument 'parallel=True' was specified but no transformation for parallel execution was possible.

To find out why, try turning on parallel diagnostics, see https://numba.pydata.org/numba-doc/latest/user/parallel.html#diagnostics for help.

File "pcdet/datasets/kitti/kitti_object_eval_python/eval.py", line 160: @numba.jit(nopython=True, parallel=True) def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1): ^

warnings.warn(errors.NumbaPerformanceWarning(msg, 2023-12-13 10:45:27,724 INFO Car [email protected], 0.70, 0.70: bbox AP:97.2287, 90.0781, 88.7225 bev AP:88.5526, 76.0166, 68.7856 3d AP:79.1395, 66.1320, 58.5258 aos AP:97.04, 89.78, 88.05 Car [email protected], 0.70, 0.70: bbox AP:98.7335, 94.4128, 91.2468 bev AP:89.5465, 76.3046, 70.7628 3d AP:82.8323, 64.9919, 59.4407 aos AP:98.54, 94.05, 90.50 Car [email protected], 0.50, 0.50: bbox AP:97.2287, 90.0781, 88.7225 bev AP:96.9713, 89.6054, 87.2113 3d AP:90.8074, 89.1699, 84.4519 aos AP:97.04, 89.78, 88.05 Car [email protected], 0.50, 0.50: bbox AP:98.7335, 94.4128, 91.2468 bev AP:98.3775, 92.0581, 88.6882 3d AP:96.3894, 91.3967, 86.3852 aos AP:98.54, 94.05, 90.50 Pedestrian [email protected], 0.50, 0.50: bbox AP:45.4138, 39.5464, 36.9842 bev AP:30.2508, 26.1992, 24.3483 3d AP:25.8574, 22.3619, 20.4178 aos AP:20.07, 17.86, 16.87 Pedestrian [email protected], 0.50, 0.50: bbox AP:43.9603, 37.1875, 34.1949 bev AP:26.1509, 21.9390, 19.8038 3d AP:20.6679, 17.3777, 15.3087 aos AP:19.48, 16.83, 15.50 Pedestrian [email protected], 0.25, 0.25: bbox AP:45.4138, 39.5464, 36.9842 bev AP:49.1159, 43.0023, 39.5303 3d AP:49.0571, 42.9293, 39.4092 aos AP:20.07, 17.86, 16.87 Pedestrian [email protected], 0.25, 0.25: bbox AP:43.9603, 37.1875, 34.1949 bev AP:47.2879, 40.7037, 37.4303 3d AP:47.1765, 40.3084, 37.2881 aos AP:19.48, 16.83, 15.50 Cyclist [email protected], 0.50, 0.50: bbox AP:68.7559, 43.9899, 42.1120 bev AP:61.2625, 38.3186, 36.2334 3d AP:59.8401, 37.2659, 34.4511 aos AP:46.98, 30.67, 29.65 Cyclist [email protected], 0.50, 0.50: bbox AP:69.0910, 42.6764, 39.9248 bev AP:60.7892, 35.7985, 33.0912 3d AP:58.3736, 34.2494, 31.3953 aos AP:47.56, 29.96, 28.33 Cyclist [email protected], 0.25, 0.25: bbox AP:68.7559, 43.9899, 42.1120 bev AP:68.6062, 43.2530, 41.3012 3d AP:68.5538, 42.9903, 41.2211 aos AP:46.98, 30.67, 29.65 Cyclist [email protected], 0.25, 0.25: bbox AP:69.0910, 42.6764, 39.9248 bev AP:69.3643, 41.8688, 38.7695 3d AP:69.2159, 41.7177, 38.6152 aos AP:47.56, 29.96, 28.33

2023-12-13 10:45:27,732 INFO ---- 2d box evaluation ---- 2023-12-13 10:46:00,480 INFO Car [email protected], 0.70, 0.70: bbox AP:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP:0.0000, 0.0000, 0.0000

2023-12-13 10:46:00,480 INFO Result is save to /workspace/Dataset/DSGN2/outputs/workspace_Dataset_DSGN2_configs_stereo_kitti_models/dsgn2.default/ckpt/checkpoint_epoch_34.pth.eval/eval/epoch_34/val/default 2023-12-13 10:46:00,480 INFO Evaluation done.*

The 3D evaluation looks good, but why the performance of the 2D bounding box prediction is 0?

Blume95 avatar Dec 13 '23 10:12 Blume95

Cool, the result looks normal.

The 2D bounding box results are referred to the box AP. For example,

Car [email protected], 0.70, 0.70: bbox AP:98.7335, 94.4128, 91.2468 bev AP:89.5465, 76.3046, 70.7628 3d AP:82.8323, 64.9919, 59.4407 aos AP:98.54, 94.05, 90.50

The 2D bbox AP_{0.7}_R40 (moderate) is 94.4, the BEV bbox AP_R40 is 76.3.

chenyilun95 avatar Dec 13 '23 11:12 chenyilun95

hello. Thank you for your amazing work. I'm having the exact same problem as @girish1511. @Blume95. Below I upload the “xxxxxx.txt” result I got. DSGN2-Output.zip This result was obtained using the official checkpoint. If you don't mind, can you provide reliable results (3769 txt files)? There is no problem with training and I can create the output, but I would like to use official output.

THANKS !!

sjg918 avatar Jan 14 '24 14:01 sjg918

Sorry that my machines have no the KITTI dataset right now. The official model is trained and inferenced with this code. Since you run the model, you can try training the model on your own and check the results after several epochs.

chenyilun95 avatar Jan 15 '24 03:01 chenyilun95

@chenyilun95 @Blume95 一样的问题...对官方的权重文件目前有解决的办法吗?或者有大佬可以提供一个训练过的文件吗?我只是想用测试一下结果,2080ti不太方便训练,谢谢!

moyanouo avatar Mar 12 '24 13:03 moyanouo