PyTorch-CIFAR-10-autoencoder
PyTorch-CIFAR-10-autoencoder copied to clipboard
This is a reimplementation of the blog post "Building Autoencoders in Keras". Instead of using MNIST, this project uses CIFAR10.
building-autoencoders-in-Pytorch
This is a reimplementation of the blog post "Building Autoencoders in Keras". Instead of using MNIST, this project uses CIFAR10.
Current Results (Trained on Tesla K80 using Google Colab)
First attempt: (BCEloss=~0.57)

Best Predictions so far: (BCEloss=~0.555)

Targets:

Previous Results (Trained on GTX1070)
First attempt: (Too much MaxPooling and UpSampling)

Second attempt: (Model architecture is not efficient)

Targets:

License
MIT