Langchain-Chatchat
Langchain-Chatchat copied to clipboard
想在使用文件对话时使用自己的提示词,想要的回答时结构化的格式输出,我在自定义提示词的时候如何写我需要结构化方式的回答?
To customize your prompt for structured format responses in file dialogs, you can use Python's str.format method for dynamic prompt generation. Here's a concise guide:
-
Create a Custom Prompt Template: Use
str.formatwith placeholders ({}) for dynamic content. This allows you to insert variables like user input or context into the prompt. -
Define Variables for the Template: Identify the variables you need (e.g., user input, context) and prepare them to be inserted into the template at runtime.
-
Render the Custom Prompt: Fill in the template with your variables to generate the final prompt to be used in your dialog system.
-
Handle Structured Responses: Ensure your system can parse and handle the structured responses, which might include actions, observations, and other structured data.
Example code snippet to illustrate these steps:
class CustomPromptTemplate(StringPromptTemplate):
template: str
tools: List[Tool]
def format(self, **kwargs) -> str:
# Example of adding intermediate steps and tool descriptions
kwargs["agent_scratchpad"] = "\n".join([f"Thought: {action.log}" for action, _ in kwargs.get("intermediate_steps", [])])
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
return self.template.format(**kwargs)
# Rendering the custom prompt
custom_prompt_template = CustomPromptTemplate(template="Your custom prompt here with variables like {input}")
rendered_prompt = custom_prompt_template.format(input="Your specific question or input")
# Simulate getting a structured response
def get_response_for_custom_prompt(prompt):
# Logic to process the prompt and return a structured response
return {"action": "ExampleAction", "data": "ExampleData"}
# Handling the structured response
response = get_response_for_custom_prompt(rendered_prompt)
print(response)
This approach allows you to dynamically generate prompts tailored to your needs and handle responses in a structured format, facilitating easier parsing and processing of the data.
Details
Sources
- webui_pages/dialogue/dialogue.py
- configs/prompt_config.py.example
- server/agent/custom_template.py
- server/agent/custom_agent/ChatGLM3Agent.py
- markdown_docs/server/agent/custom_template.md
About Dosu This response is meant to be useful and save you time. It is not meant to be a precise solution, but rather a starting point for your own research.
Help me be more useful! Please leave a 👍 if this is helpful and 👎 if it is irrelevant.
To continue the conversation, mention @dosu.
插眼
prompt_config.py里改提示词,我把中文的改成英文了,这样老外可以看到英文回复
我想以xxx:xxx xxx:xxx的格式输出 但是他的输出格式是xxx:xxx xxx:xxx 我已经在提示词写了以第一种格式输出可回答还是第二种
没明白你的意思,能具体些?
1-prompt中举例说明回复格式 2-用符合格式的数据微调模型