WGAN-GP-tensorflow
WGAN-GP-tensorflow copied to clipboard
Tensorflow Implementation of Paper "Improved Training of Wasserstein GANs"
WGAN-GP-tensorflow
Tensorflow implementation of paper "Improved Training of Wasserstein GANs".
![]()
- 0 epoch
- 25 epoch
- 50 epoch
- 100 epoch
- 150 epoch
Prerequisites
- Python 2.7 or 3.5
- Tensorflow 1.3+
- SciPy
- Aligned&Cropped celebA dataset(download)
- (Optional) moviepy (for visualization)
Usage
-
Download aligned&cropped celebA dataset(link) and unzip at ./data/img_align_celeba
-
Train:
$ python main.py --trainOr you can set some arguments like:
$ python main.py --dataset=celebA --max_epoch=50 --learning_rate=1e-4 --train -
Test:
$ python main.py
Acknowledge
Based on the implementation carpedm20/DCGAN-tensorflow, LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow, shekkizh/WassersteinGAN.tensorflow and igul222/improved_wgan_training.