Ultra-Fast-Lane-Detection icon indicating copy to clipboard operation
Ultra-Fast-Lane-Detection copied to clipboard

我在运行train.py时出现了以下报错

Open ZzhhzZ12345679 opened this issue 1 year ago • 3 comments

我在运行train.py时出现了以下报错: Traceback (most recent call last): File "train.py", line 152, in train(net, train_loader, loss_dict, optimizer, scheduler,logger, epoch, metric_dict, cfg.use_aux) File "train.py", line 68, in train loss = calc_loss(loss_dict, results, logger, global_step) File "train.py", line 47, in calc_loss loss_cur = loss_dict['op']i File "D:\anaconda\envs\lane\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda\envs\lane\lib\site-packages\torch\nn\modules\loss.py", line 1176, in forward label_smoothing=self.label_smoothing) File "D:\anaconda\envs\lane\lib\site-packages\torch\nn\functional.py", line 3026, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) RuntimeError: only batches of spatial targets supported (3D tensors) but got targets of size: : [32, 36, 100, 3]

ZzhhzZ12345679 avatar Nov 08 '23 07:11 ZzhhzZ12345679

chane the use_aux to False can work: parser.add_argument('--use_aux', default='False', type=str2bool)

xings-sdnu avatar Nov 13 '23 14:11 xings-sdnu

我也遇到了这个问题,应该是因为CULane的seg label是个1通道的png,我的数据集的seg label是个3通道的,调整一下label维度就好了

lz06787 avatar Jan 12 '24 02:01 lz06787

怎么调整这个维度

ZzhhzZ12345679 avatar May 29 '24 06:05 ZzhhzZ12345679