theoretical-physics
theoretical-physics copied to clipboard
corrections to m_z and m_w
from math import pi, sin, cos, sqrt, log eV = 1 KeV = 1e3 MeV = 1e6 GeV = 1e9 g = 0.631 theta_W = 28.67 * pi / 180 v = 246.218 * GeV h_e = 2.935 * 1e-6 * eV h_mu = 6.065 * 1e-4 * eV h_tau = 1.021 * 1e-2 * eV alpha = 1/137.035999 m_t = 180 * GeV m_w = g*v/2 m_z = g*v/2/cos(theta_W) s_w = sin(theta_W) # Same as: s_w = sqrt(1-m_w**2/m_z**2) # I think that s_0 and s_w is the same #s_0 = sqrt(0.2307) s_0 = s_w print s_0**2 # from the graph: #s_w = sqrt(0.226) #s_star = sqrt(0.231) #print s_star**2 m_h = 1000 * GeV rhs = -3*alpha/(16*pi*(cos(theta_W)**2 - sin(theta_W)**2)) * m_t**2 / m_z**2 rhs += alpha * (1+9*sin(theta_W)**2)/(48*pi * (cos(theta_W)**2 - sin(theta_W)**2)) * log(m_h**2/m_w**2) s_star = sqrt(s_0**2 + rhs) rhs = -3*alpha/(16*pi*sin(theta_W)**2) * m_t**2 / m_z**2 rhs += alpha * 5./(24*pi) * log(m_h**2/m_w**2) s_w = sqrt(s_star**2 + rhs) print s_star**2 print s_w**2
This prints:
bash-3.2$ python a.py 0.230173648241 0.228245381646 0.222897377383
Which agrees with P & S at least a little bit, page 772, Figure 21.14
A better script is:
from math import pi, log, sqrt, sin, cos, asin eV = 1. KeV = 1e3 * eV MeV = 1e6 * eV GeV = 1e9 * eV M = 76500 * MeV M0 = 87640 * MeV m_u = 250 * MeV m_d = 250 * MeV m_e = 0.511 * MeV m_mu = 105.6 * MeV m_tau = 1777 * MeV g = sqrt(0.039 * pi**2) theta = asin(sqrt(0.238)) s_t = sin(theta) c_t = cos(theta) #m_H = 3 * GeV #m_H = 200 * GeV m_H = 1000 * GeV #print g**2/(384*pi**2) * M * log(m_H**2) / MeV #print g**2/(384*pi**2) * M0 * (1 + 10*s_t**2/c_t**2)* log(m_H**2) / MeV delta_M_e = - g**2 * M**2 / pi**2 * (5./36 + 1./48 * \ (2*log(m_u**2/M**2) + log(m_d**2/M**2) + log(m_e**2/M**2))) #delta_M_mu = - g**2 * M**2 / pi**2 * (5./36 + 1./48 * \ # (2*log(m_u**2/M**2) + log(m_d**2/M**2) + log(m_mu**2/M**2))) #delta_M_tau = - g**2 * M**2 / pi**2 * (5./36 + 1./48 * \ # (2*log(m_u**2/M**2) + log(m_d**2/M**2) + log(m_tau**2/M**2))) delta_M0 = - g**2 * M0**2 / (pi**2 * c_t**2) * ( \ 1./108 * (40*c_t**4 - 50*c_t**2 + 25 ) + \ 1./72 * (8 *c_t**4 - 10*c_t**2 + 5 ) * log(m_u**2/M0**2) + \ 1./72 * (2 *c_t**4 - c_t**2 + 1./2) * log(m_d**2/M0**2) + \ 1./48 * (4 *c_t**4 - 6 *c_t**2 + 3 ) * log(m_e**2/M0**2)) M_higgs = 120 * MeV M0_higgs = 140 * MeV print 0.5 * delta_M_e / M / MeV print 0.5 * delta_M0 / M0 / MeV print "bare masses:" print M / GeV print M0 / GeV print "shifted masses:" print (M + 0.5 * delta_M_e / M + M_higgs) / GeV print (M0 + 0.5 * delta_M0 / M0 + M0_higgs) / GeV print "shifted masses (correct):" print (M + 3080 * MeV) / GeV print (M0 + 3310 * MeV) / GeV print "experimental values:" print 80.399 print 91.1876
Which produces:
1600.76296787 1702.62148258 bare masses: 76.5 87.64 shifted masses: 78.2207629679 89.4826214826 shifted masses (correct): 79.58 90.95 experimental values: 80.399 91.1876