brainweb
brainweb copied to clipboard
BrainWeb: Multimodal models of 20 normal brains
The following example may be launched interactively via any of the following:
- |Binder|
-
Local file <README.ipynb>
__ -
GitHub Preview <https://github.com/casperdcl/brainweb/blob/master/README.ipynb>
__
.. |Binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/casperdcl/brainweb/master?filepath=README.ipynb
BrainWeb-based multimodal models of 20 normal brains
This project was initially inspired by "BrainWeb: 20 Anatomical Models of 20 Normal Brains <http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html>
__."
However there are a number of generally useful tools, image processing &
display functions included in this project. For example, this includes
volshow()
for interactive comparison of multiple 3D volumes,
get_file()
for caching data URLs, and register()
for image
coregistration.
|PyPI| |CI| |Quality| |DOI| |LICENCE|
Download and Preprocessing for PET-MR Simulations
This notebook will not re-download/re-process files if they already exist.
-
Output data
-
~/.brainweb/subject_*.npz
: dtype(shape):float32(127, 344, 344)
-
-
Raw data source <http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html>
__-
~/.brainweb/subject_*.bin.gz
: dtype(shape):uint16(362, 434, 362)
-
-
Install
-
pip install brainweb
-
- Author: Casper da Costa-Luis [email protected]
- Date: 2017-2020
- Licence:
MPLv2.0 <https://www.mozilla.org/MPL/2.0>
__
.. |PyPI| image:: https://img.shields.io/pypi/v/brainweb.svg :target: https://pypi.org/project/brainweb .. |CI| image:: https://travis-ci.org/casperdcl/brainweb.svg?branch=master :target: https://travis-ci.org/casperdcl/brainweb .. |Quality| image:: https://api.codacy.com/project/badge/Grade/cdad13693b0141199c31d5b44c7ab185 :target: https://www.codacy.com/app/casper-dcl/brainweb .. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3269888.svg :target: https://doi.org/10.5281/zenodo.3269888 .. |LICENCE| image:: https://img.shields.io/pypi/l/brainweb.svg?label=licence :target: https://www.mozilla.org/MPL/2.0
.. code:: python
from __future__ import print_function, division
%matplotlib notebook
import brainweb
from brainweb import volshow
import numpy as np
from os import path
from tqdm.auto import tqdm
import logging
logging.basicConfig(level=logging.INFO)
Raw Data
.. code:: python
# download
files = brainweb.get_files()
# read last file
data = brainweb.load_file(files[-1])
# show last subject
print(files[-1])
volshow(data, cmaps=['gist_ncar']);
::
~/.brainweb/subject_54.bin.gz
.. image:: https://raw.githubusercontent.com/casperdcl/brainweb/master/raw.png
Transform
Convert raw image data:
-
Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)
-
PET/T1/T2/uMap intensities
- PET defaults to FDG intensity ratios; could use e.g. Amyloid instead
-
randomised structure for PET/T1/T2
-
t (1 + g [2 G_sigma(r) - 1]), where
- r = rand(127, 344, 344) in [0, 1),
- Gaussian smoothing sigma = 1,
- g = 1 for PET; 0.75 for MR, and
- t = the PET or MR piecewise constant phantom
-
.. code:: python
# show region probability masks
PetClass = brainweb.FDG
label_probs = brainweb.get_label_probabilities(files[-1], labels=PetClass.all_labels)
volshow(label_probs[brainweb.trim_zeros_ROI(label_probs)], titles=PetClass.all_labels, frameon=False);
.. image:: https://raw.githubusercontent.com/casperdcl/brainweb/master/pmasks.png
.. code:: python
brainweb.seed(1337)
for f in tqdm(files, desc="mMR ground truths", unit="subject"):
vol = brainweb.get_mmr_fromfile(
f,
petNoise=1, t1Noise=0.75, t2Noise=0.75,
petSigma=1, t1Sigma=1, t2Sigma=1,
PetClass=PetClass)
.. code:: python
# show last subject
print(f)
volshow([vol['PET' ][:, 100:-100, 100:-100],
vol['uMap'][:, 100:-100, 100:-100],
vol['T1' ][:, 100:-100, 100:-100],
vol['T2' ][:, 100:-100, 100:-100]],
cmaps=['hot', 'bone', 'Greys_r', 'Greys_r'],
titles=["PET", "uMap", "T1", "T2"],
frameon=False);
::
~/.brainweb/subject_54.bin.gz
.. image:: https://raw.githubusercontent.com/casperdcl/brainweb/master/mMR.png
.. code:: python
# add some lesions
brainweb.seed(1337)
im3d = brainweb.add_lesions(vol['PET'])
volshow(im3d[:, 100:-100, 100:-100], cmaps=['hot']);
.. image:: https://raw.githubusercontent.com/casperdcl/brainweb/master/lesions.png
.. code:: python
# bonus: use brute-force registration to transform
#!pip install -U 'brainweb[register]'
reg = brainweb.register(
data[:, ::-1], target=vol['PET'],
src_resolution=brainweb.Res.brainweb,
target_resolution=brainweb.Res.mMR)
volshow({
"PET": vol['PET'][:, 100:-100, 100:-100],
"RawReg": reg[ :, 100:-100, 100:-100],
"T1": vol['T1' ][:, 100:-100, 100:-100],
}, cmaps=['hot', 'gist_ncar', 'Greys_r'], ncols=3, tight_layout=5, figsize=(9.5, 3.5), frameon=False);
.. image:: https://raw.githubusercontent.com/casperdcl/brainweb/master/reg.png