Caglar Cakan
Caglar Cakan
Right now, we have a list of all models to test and have a function for each of them. This is kind of ugly. Therefore, I think we should have...
```python from neurolib.utils.parameterSpace import ParameterSpace shape = 4 pars = [np.random.rand(shape, shape) for i in range(10)] parameters = ParameterSpace({"p": pars}) parameters.getRandom() ``` Returns ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call...
```python from neurolib.utils.parameterSpace import ParameterSpace shape = 2 n_pars = 2 pars = [np.random.rand(shape, shape) for i in range(n_pars)] parameters = ParameterSpace({"p": pars}) ``` Returns ``` --------------------------------------------------------------------------- ValueError Traceback (most...
Need to do a proper optimization of parameters so the fit value is good. Right now it's... suboptimal. File: example-3-meg-functional-connectivity.ipynb 
WIP, maybe netcdf?
There should be a way to list all available models. Similar to how TVB handles it would be nice: http://docs.thevirtualbrain.com/_modules/tvb/simulator/models.html
`tqdm` offers a very nice wrapper around for loops for easy progress bars. This could be implemented easily in `Model.integrate_chunkwise()`.