关于training_example.json 复现
我找到了示例训练数据在mind2web中的原始内容,但是坐标计算对不上,请问可以分享下坐标计算方法嘛?
我理解training_example.json 的第一轮对话的坐标(495,30)是相对坐标,该条数据对应的图片分辨率是1280*720,计算出的绝对坐标是(633.6,21.6)
该条原始数据对应的第一个框的坐标是
"bbox": {
"x": 595.25,
"y": 0.0,
"width": 118.15625,
"height": 60.0
},
框的中心点的绝对坐标为(654,30)
请问这样的误差是否正确呢,训练数据对框的处理是怎样的呢?
All input data coordinates are normalized within the range of 0-1000 as relative coordinates, without involving absolute coordinate inputs.
All input data coordinates are normalized within the range of 0-1000 as relative coordinates, without involving absolute coordinate inputs.
抱歉,说错了,是相对坐标,请问是如何处理得到框对应的的相对坐标呢?
Consider an image with a resolution of 1920 × 1080 pixels, and a bounding box with absolute coordinates:
| Corner | Absolute Coordinates (X, Y) |
|---|---|
| Top-left | (640, 270) |
| Bottom-right | (1280, 810) |
Formula for Relative Coordinates
x' = (x / W) * 1000
y' = (y / H) * 1000
Where:
x, yare the absolute coordinates.W, Hare the image width and height.- The multiplication by 1000 ensures normalized coordinates fall within [0, 1000].
Converted Relative Coordinates
| Corner | Calculation | Relative Coordinates (X', Y') |
|---|---|---|
| Top-left | (640 / 1920) * 1000, (270 / 1080) * 1000 |
(333.33, 250.00) |
| Bottom-right | (1280 / 1920) * 1000, (810 / 1080) * 1000 |
(666.67, 750.00) |
Hi, sorry to bother you, but I've been following the algorithm you provided and I still can't figure out how you got the coordinates (495, 30).
@MickeyFei I was just wondering if the calculation method is clear to you.