retinanet-keras
retinanet-keras copied to clipboard
label for negative!
计算每一个先验框应该有的权重
alpha_factor_for_back = keras.backend.ones_like(labels_for_back) * alpha
alpha_factor_for_back = backend.where(keras.backend.equal(labels_for_back, 1), alpha_factor_for_back, 1 - alpha_factor_for_back)
focal_weight_for_back = backend.where(keras.backend.equal(labels_for_back, 1), 1 - classification_for_back, classification_for_back)
focal_weight_for_back = alpha_factor_for_back * focal_weight_for_back ** gamma
这个labels_for_back 中哪个元素是1, 负样本如何在制作标签中指定1,还是都设为0
负样本不是没有存在目标的先验框么,那他的labels_for_back就是0吧
就全都是0
负样本不是没有存在目标的先验框么,那他的labels_for_back就是0吧
keras.backend.equal(labels_for_back, 1) 那这个输出全是False,然后取 alpha_factor_for_back = 1 - alpha_factor_for_back focal_weight_for_back=classification_for_back作为系数 可以这样理解吗
是的