C:\Users\97328.conda\envs\torch\python.exe "E:\A_Deep learning model\pspnet-txx-yck\predict.py"
E:\A_Deep learning model\pspnet-txx-yck\logs\lr0.0001\best_epoch_weights.pth model, and classes loaded.
Configurations:
| keys | values|
| model_path | E:\A_Deep learning model\pspnet-txx-yck\logs\lr0.0001\best_epoch_weights.pth|
| num_classes | 2|
| backbone | mobilenet|
| input_shape | [512, 512]|
| downsample_factor | 16|
| mix_type | 0|
| cuda | True|
E:\A_Deep learning model\pspnet-txx-yck\logs\lr0.0001\best_epoch_weights.pth model, and classes loaded.
Starting export with onnx 1.14.1.
============= Diagnostic Run torch.onnx.export version 2.0.0+cu118 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
Traceback (most recent call last):
File "E:\A_Deep learning model\pspnet-txx-yck\predict.py", line 163, in
pspnet.convert_to_onnx(simplify, onnx_save_path)
File "E:\A_Deep learning model\pspnet-txx-yck\pspnet.py", line 277, in convert_to_onnx
torch.onnx.export(self.net,
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\utils.py", line 506, in export
_export(
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\utils.py", line 1548, in _export
graph, params_dict, torch_out = _model_to_graph(
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\utils.py", line 1117, in _model_to_graph
graph = _optimize_graph(
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\utils.py", line 665, in _optimize_graph
graph = _C._jit_pass_onnx(graph, operator_export_type)
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\utils.py", line 1891, in _run_symbolic_function
return symbolic_fn(graph_context, *inputs, **attrs)
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\symbolic_helper.py", line 392, in wrapper
return fn(g, *args, **kwargs)
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\symbolic_opset9.py", line 1836, in symbolic_fn
return symbolic_helper._unimplemented(
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\symbolic_helper.py", line 607, in _unimplemented
_onnx_unsupported(f"{op}, {msg}", value)
File "C:\Users\97328.conda\envs\torch\lib\site-packages\torch\onnx\symbolic_helper.py", line 618, in _onnx_unsupported
raise errors.SymbolicValueError(
torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator adaptive_avg_pool2d, output size that are not factor of input size. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues [Caused by the value '622 defined in (%622 : Long(2, strides=[1], device=cpu) = onnx::Constantvalue= 3 3 [ CPULongType{2} ]
)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Constant'.]
Inputs:
Empty
Outputs:
#0: 622 defined in (%622 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 3 3 [ CPULongType{2} ]]()
) (type 'Tensor')
进程已结束,退出代码1