Dreambooth icon indicating copy to clipboard operation
Dreambooth copied to clipboard

VRAM/Speed tests

Open brian6091 opened this issue 2 years ago • 2 comments
trafficstars

Tesla T4

  • GPU=14396/15109MiB

  • 3.66s/it training, 1.08s/it inference

  • BATCH_SIZE=4

  • TRAIN_TEXT_ENCODER

  • USE_8BIT_ADAM

  • FP16

  • GRADIENT_CHECKPOINTING

  • GRADIENT_ACCUMULATION_STEPS=1

  • USE_EMA=False

  • RESOLUTION=512

  • No errors or warnings with xformers-0.0.15.dev0+189828c

diffusers==0.9.0 accelerate==0.14.0 torchvision @ https://download.pytorch.org/whl/cu116/torchvision-0.14.0%2Bcu116-cp38-cp38-linux_x86_64.whl transformers==4.25.1 xformers @ https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+189828c.d20221207-cp38-cp38-linux_x86_64.whl

Copy-and-paste the text below in your GitHub issue

  • Accelerate version: 0.14.0
  • Platform: Linux-5.10.133+-x86_64-with-glibc2.27
  • Python version: 3.8.15
  • Numpy version: 1.21.6
  • PyTorch version (GPU?): 1.13.0+cu116 (True)

brian6091 avatar Dec 07 '22 23:12 brian6091

A100-SXM4-40GB

  • GPU=31142/40536MiB, 32814 after first save, 33302 after 2nd save,

  • 1.03s/it training, 3.30s/it inference

  • BATCH_SIZE=4

  • TRAIN_TEXT_ENCODER

  • USE_8BIT_ADAM

  • FP16

  • GRADIENT_CHECKPOINTING

  • GRADIENT_ACCUMULATION_STEPS=1

  • USE_EMA=False

  • RESOLUTION=512

  • Warnings with xformers-0.0.15.dev0+4c06c7 (compiled on A10G)

  • https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl

  • /usr/local/lib/python3.8/dist-packages/xformers/_C.so: undefined symbol: _ZNK3c104impl13OperatorEntry20reportSignatureErrorENS0_12CppSignatureE WARNING:xformers:WARNING: /usr/local/lib/python3.8/dist-packages/xformers/_C.so: undefined symbol: _ZNK3c104impl13OperatorEntry20reportSignatureErrorENS0_12CppSignatureE Need to compile C++ extensions to get sparse attention support. Please run python setup.py build develop */usr/local/lib/python3.8/dist-packages/diffusers/models/attention.py:433: UserWarning: Could not enable memory efficient attention. Make sure xformers is installed correctly and a GPU is available: No such operator xformers::efficient_attention_forward_cutlass - did you forget to build xformers with python setup.py develop? warnings.warn(

diffusers==0.9.0 accelerate==0.14.0 torchvision @ https://download.pytorch.org/whl/cu116/torchvision-0.14.0%2Bcu116-cp38-cp38-linux_x86_64.whl transformers==4.25.1 xformers @ https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl

Copy-and-paste the text below in your GitHub issue

  • Accelerate version: 0.14.0
  • Platform: Linux-5.10.133+-x86_64-with-glibc2.27
  • Python version: 3.8.15
  • Numpy version: 1.21.6
  • PyTorch version (GPU?): 1.13.0+cu116 (True)
  • Accelerate default config: Not found
  • Accelerate version: 0.14.0
  • Platform: Linux-5.10.133+-x86_64-with-glibc2.27
  • Python version: 3.8.15
  • Numpy version: 1.21.6
  • PyTorch version (GPU?): 1.13.0+cu116 (True)

brian6091 avatar Dec 08 '22 01:12 brian6091

A100-SXM4-40GB

  • GPU=16168/40536MiB
  • 1.23s/it training, 5.83 it/s inference
  • BATCH_SIZE=4
  • TRAIN_TEXT_ENCODER
  • USE_8BIT_ADAM
  • FP16
  • GRADIENT_CHECKPOINTING
  • GRADIENT_ACCUMULATION_STEPS=1
  • USE_EMA=False
  • RESOLUTION=512
  • No errors or warnings with 0.0.15.dev0%2B4c06c79/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl

Description: Ubuntu 18.04.6 LTS diffusers==0.9.0 torchvision @ https://download.pytorch.org/whl/cu116/torchvision-0.14.0%2Bcu116-cp38-cp38-linux_x86_64.whl transformers==4.25.1 xformers @ https://github.com/brian6091/xformers-wheels/releases/download/0.0.15.dev0%2B4c06c79/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl 2022-12-08 10:21:20.344739: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.

Copy-and-paste the text below in your GitHub issue

  • Accelerate version: 0.14.0
  • Platform: Linux-5.10.133+-x86_64-with-glibc2.27
  • Python version: 3.8.15
  • Numpy version: 1.21.6
  • PyTorch version (GPU?): 1.13.0+cu116 (True)

brian6091 avatar Dec 08 '22 10:12 brian6091