retinaface-pytorch
retinaface-pytorch copied to clipboard
Inference Code for RetinaFace with MobileNet Backend in PyTorch
Inference Code for RetinaFace with MobileNet Backend in PyTorch
Step 1:
cd cython
python setup.py build_ext --inplace
Step 2:
python inference.py
Evaluation(WIDERFACE):
Easy Val AP: 0.8872715908531869
Medium Val AP: 0.8663337842229522
Hard Val AP: 0.771796729363941
Test Results:


References:
@inproceedings{deng2019retinaface, title={RetinaFace: Single-stage Dense Face Localisation in the Wild}, author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos}, booktitle={arxiv}, year={2019} }