edward
edward copied to clipboard
index out of range error with tensorflow r1.8
Versions: 'edward': '1.3.5', 'tensorflow': '1.8.0'
Trying to run example http://nbviewer.jupyter.org/github/blei-lab/edward/blob/master/notebooks/tensorboard.ipynb
The statement
inference.run(n_samples=5, n_iter=250, logdir='log/n_samples_5')
results in
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/util/random_variables.py:54: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-5-57315b7843b6> in <module>()
1 inference = ed.KLqp({w: qw, b: qb}, data={X: X_train, y: y_train})
----> 2 inference.run(n_samples=5, n_iter=250, logdir='log/n_samples_5')
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/inferences/inference.py in run(self, variables, use_coordinator, *args, **kwargs)
123 Passed into `initialize`.
124 """
--> 125 self.initialize(*args, **kwargs)
126
127 if variables is None:
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/inferences/klqp.py in initialize(self, n_samples, kl_scaling, *args, **kwargs)
111 self.n_samples = n_samples
112 self.kl_scaling = kl_scaling
--> 113 return super(KLqp, self).initialize(*args, **kwargs)
114
115 def build_loss_and_gradients(self, var_list):
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/inferences/variational_inference.py in initialize(self, optimizer, var_list, use_prettytensor, global_step, *args, **kwargs)
66 var_list = list(var_list)
67
---> 68 self.loss, grads_and_vars = self.build_loss_and_gradients(var_list)
69
70 if self.logging:
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/inferences/klqp.py in build_loss_and_gradients(self, var_list)
146 if is_reparameterizable:
147 if is_analytic_kl:
--> 148 return build_reparam_kl_loss_and_gradients(self, var_list)
149 # elif is_analytic_entropy:
150 # return build_reparam_entropy_loss_and_gradients(self, var_list)
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/inferences/klqp.py in build_reparam_kl_loss_and_gradients(inference, var_list)
738 for z, qz in six.iteritems(inference.latent_vars):
739 # Copy q(z) to obtain new set of posterior samples.
--> 740 qz_copy = copy(qz, scope=scope)
741 dict_swap[z] = qz_copy.value()
742
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/util/random_variables.py in copy(org_instance, dict_swap, scope, replace_itself, copy_q, copy_parent_rvs)
292 else:
293 kwargs[key] = _copy_default(
--> 294 value, dict_swap, scope, True, copy_q, False)
295
296 kwargs['name'] = new_name
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/util/random_variables.py in _copy_default(x, *args, **kwargs)
134 def _copy_default(x, *args, **kwargs):
135 if isinstance(x, (RandomVariable, tf.Operation, tf.Tensor, tf.Variable)):
--> 136 x = copy(x, *args, **kwargs)
137
138 return x
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/util/random_variables.py in copy(org_instance, dict_swap, scope, replace_itself, copy_q, copy_parent_rvs)
316 # op. Therefore copy the op itself.
317 op = tensor.op
--> 318 new_op = copy(op, dict_swap, scope, True, copy_q, False)
319
320 output_index = op.outputs.index(tensor)
/usr/local/lib/python3.6/site-packages/edward-1.3.5-py3.6.egg/edward/util/random_variables.py in copy(org_instance, dict_swap, scope, replace_itself, copy_q, copy_parent_rvs)
369 [], # input types; will add them afterwards
370 original_op,
--> 371 op_def)
372
373 # advertise op early to break recursions
/usr/local/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
1730 # Refactor so we don't have to do this here.
1731 grouped_inputs = self._reconstruct_sequence_inputs(
-> 1732 op_def, inputs, node_def.attr)
1733 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
1734 control_input_ops)
/usr/local/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in _reconstruct_sequence_inputs(self, op_def, inputs, attrs)
1801 grouped_inputs.append(inputs[i:i + input_len])
1802 else:
-> 1803 grouped_inputs.append(inputs[i])
1804 i += input_len
1805
IndexError: list index out of range
Same issue.
Same
same
Current version of edward does not have compatibility with TensorFlow 1.8 release.
Run this (or set in the environment) before importing edward
import os
os.environ['TF_C_API_GRAPH_CONSTRUCTION']='0'
Evening after import os os.environ['TF_C_API_GRAPH_CONSTRUCTION']='0' running this before importing edward still I am facing IndexError: list index out of range.
Edward:1.3.5 TensorFlow:1.11.0
Can anyone help me in resolving the issue?
Same issue. Tensorflow: 1.12.0
Same
I don't think this is maintained anymore.
Same issue.
Got any solution?
Has anyone resolved this issue?
Not yet
On Wed, Feb 6, 2019, 5:37 AM Sonam [email protected] wrote:
Has anyone resolved this issue?
— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/blei-lab/edward/issues/895#issuecomment-460854595, or mute the thread https://github.com/notifications/unsubscribe-auth/Aosf0WWeczc1VcHUroNexQG6KkGrkqMLks5vKhzNgaJpZM4UNOEP .
Same issue
same issue
same issue :(
TensorFlow==1.7.0 is OK!
Which version of keras is ok?
On 8/10/2019 13:01,diwu93[email protected] wrote:
TensorFlow==1.7.0 is OK!
— You are receiving this because you commented. Reply to this email directly, view it on GitHub, or mute the thread.
same issue
Has anyone resolved this issue?
I get the solution as following: you should move back to the version 1.5.0 of Tensorflow using this command pip install tensorflow==1.5.0..if you can not get it..do the following: create new Env using command: conda create --name myenv conda activate myenv after that downgrade your python to python=3.6.5 then install TensorFlow using pip install tensorflow==1.5.0 then install Edward Good Luck