dsmil-wsi
dsmil-wsi copied to clipboard
Reproduce features for Camelyon16
HI,
I am trying to reproduce your results for Camelyon 16. Can you please confirm the settings for features creation?
I am using deepzoom_tiler.py with following settings:
parser.add_argument('-d', '--dataset', type=str, default='Camelyon16', help='Dataset name')
parser.add_argument('-e', '--overlap', type=int, default=0, help='Overlap of adjacent tiles [0]')
parser.add_argument('-f', '--format', type=str, default='jpeg', help='image format for tiles [jpeg]')
parser.add_argument('-v', '--slide_format', type=str, default='tif', help='image format for tiles [svs]')
parser.add_argument('-j', '--workers', type=int, default=4, help='number of worker processes to start [4]')
parser.add_argument('-q', '--quality', type=int, default=90, help='JPEG compression quality [90]')
parser.add_argument('-s', '--tile_size', type=int, default=224, help='tile size [224]')
parser.add_argument('-m', '--magnifications', type=int, nargs='+', default=[1,3], help='Levels for patch extraction [0]')
parser.add_argument('-t', '--background_t', type=int, default=25, help='Threshold for filtering background [25]')
Then I run computeFeats.py with model weights downloaded from https://drive.google.com/drive/folders/1sFPYTLPpRFbLVHCNgn2eaLStOk3xZtvT for lower patches. https://drive.google.com/drive/folders/1_mumfTU3GJRtjfcJK_M0fWm048sYYFqi for higher patches.
The settings for computeFeats.py are as follows:
parser = argparse.ArgumentParser(description='Compute TCGA features from SimCLR embedder')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size of dataloader [128]')
parser.add_argument('--num_workers', default=4, type=int, help='Number of threads for datalodaer')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--backbone', default='resnet18', type=str, help='Embedder backbone [resnet18]')
parser.add_argument('--norm_layer', default='instance', type=str, help='Normalization layer [instance]')
parser.add_argument('--magnification', default='tree', type=str, help='Magnification to compute features. Use `tree` for multiple magnifications.')
parser.add_argument('--weights', default=None, type=str, help='Folder of the pretrained weights, simclr/runs/*')
parser.add_argument('--weights_high', default='./', type=str, help='Folder of the pretrained weights of high magnification, FOLDER < `simclr/runs/[FOLDER]`')
parser.add_argument('--weights_low', default='./', type=str, help='Folder of the pretrained weights of low magnification, FOLDER <`simclr/runs/[FOLDER]`')
parser.add_argument('--dataset', default='Camelyon16', type=str, help='Dataset folder name Camelyon16')
Please check out the following terminal scrollback logs. The number of patches will be slightly different for different background thresholds but the results should look similar. You should double check the extracted patches and make sure they are correctly organized.
(dsmil) binli@gpu:/data/binli/Projects/dsmil-wsi$ python compute_feats.py --dataset=Camelyon16 --magnification=tree --weights_high=c16-high --weights_low=c16-low --norm_layer=instance --gpu_index=1
Use pretrained features.
Computed: 1/399 -- 167/167
Computed: 2/399 -- 246/246
Computed: 3/399 -- 469/469
Computed: 4/399 -- 128/128
Computed: 5/399 -- 209/209
Computed: 6/399 -- 91/91
Computed: 7/399 -- 278/278
Computed: 8/399 -- 54/54
Computed: 9/399 -- 514/514
Computed: 10/399 -- 201/201
Computed: 11/399 -- 875/875
Computed: 12/399 -- 262/262
Computed: 13/399 -- 141/141
Computed: 14/399 -- 178/178
Computed: 15/399 -- 386/386
Computed: 16/399 -- 33/33
Computed: 17/399 -- 42/42
Computed: 18/399 -- 255/255
Computed: 19/399 -- 30/30
Computed: 20/399 -- 50/50
Computed: 21/399 -- 34/34
Computed: 22/399 -- 474/474
Computed: 23/399 -- 95/95
Computed: 24/399 -- 747/747
Computed: 25/399 -- 640/640
Computed: 26/399 -- 485/485
Computed: 27/399 -- 33/33
Computed: 28/399 -- 364/364
Computed: 29/399 -- 173/173
Computed: 30/399 -- 213/213
Computed: 31/399 -- 613/613
Computed: 32/399 -- 598/598
Computed: 33/399 -- 674/674
Computed: 34/399 -- 1150/1150
Computed: 35/399 -- 131/131
Computed: 36/399 -- 478/478
Computed: 37/399 -- 507/507
Computed: 38/399 -- 79/79
Computed: 39/399 -- 688/688
Computed: 40/399 -- 1129/1129
Computed: 41/399 -- 519/519
Computed: 42/399 -- 15/15
Computed: 43/399 -- 57/57
Computed: 44/399 -- 418/418
Computed: 45/399 -- 68/68
Computed: 46/399 -- 189/189
Computed: 47/399 -- 402/402
Computed: 48/399 -- 228/228
Computed: 49/399 -- 268/268
Computed: 50/399 -- 799/799
Computed: 51/399 -- 284/284
Computed: 52/399 -- 1049/1049
Computed: 53/399 -- 1076/1076
Computed: 54/399 -- 132/132
Computed: 55/399 -- 440/440
Computed: 56/399 -- 410/410
Computed: 57/399 -- 376/376
Computed: 58/399 -- 461/461
Computed: 59/399 -- 222/222
Computed: 60/399 -- 115/115
Computed: 61/399 -- 927/927
Computed: 62/399 -- 204/204
Computed: 63/399 -- 495/495
Computed: 64/399 -- 938/938
Computed: 65/399 -- 400/400
Computed: 66/399 -- 1790/1790
Computed: 67/399 -- 870/870
Computed: 68/399 -- 650/650
Computed: 69/399 -- 625/625
Computed: 70/399 -- 1306/1306
Computed: 71/399 -- 436/436
Computed: 72/399 -- 646/646
Computed: 73/399 -- 642/642
Computed: 74/399 -- 888/888
Computed: 75/399 -- 690/690
Computed: 76/399 -- 1926/1926
Computed: 77/399 -- 442/442
Computed: 78/399 -- 439/439
Computed: 79/399 -- 736/736
Computed: 80/399 -- 1224/1224
Computed: 81/399 -- 644/644
Computed: 82/399 -- 766/766
Computed: 83/399 -- 242/242
Computed: 84/399 -- 144/144
Computed: 85/399 -- 365/365
Computed: 86/399 -- 956/956
Computed: 87/399 -- 1049/1049
Computed: 88/399 -- 1491/1491
Computed: 89/399 -- 1035/1035
Computed: 90/399 -- 1969/1969
Computed: 91/399 -- 425/425
Computed: 92/399 -- 517/517
Computed: 93/399 -- 575/575
Computed: 94/399 -- 1019/1019
Computed: 95/399 -- 704/704
Computed: 96/399 -- 1097/1097
Computed: 97/399 -- 289/289
Computed: 98/399 -- 1186/1186
Computed: 99/399 -- 614/614
Computed: 100/399 -- 1002/1002
Computed: 101/399 -- 878/878
Computed: 102/399 -- 595/595
Computed: 103/399 -- 1401/1401
Computed: 104/399 -- 862/862
Computed: 105/399 -- 1253/1253
Computed: 106/399 -- 971/971
Computed: 107/399 -- 144/144
Computed: 108/399 -- 849/849
Computed: 109/399 -- 691/691
Computed: 110/399 -- 2436/2436
Computed: 111/399 -- 1577/1577
Computed: 112/399 -- 1156/1156
Computed: 113/399 -- 2110/2110
Computed: 114/399 -- 714/714
Computed: 115/399 -- 539/539
Computed: 116/399 -- 836/836
Computed: 117/399 -- 1033/1033
Computed: 118/399 -- 953/953
Computed: 119/399 -- 1226/1226
Computed: 120/399 -- 1313/1313
Computed: 121/399 -- 1488/1488
Computed: 122/399 -- 817/817
Computed: 123/399 -- 1374/1374
Computed: 124/399 -- 1749/1749
Computed: 125/399 -- 1193/1193
Computed: 126/399 -- 1177/1177
Computed: 127/399 -- 745/745
Computed: 128/399 -- 1728/1728
Computed: 129/399 -- 1182/1182
Computed: 130/399 -- 1360/1360
Computed: 131/399 -- 1150/1150
Computed: 132/399 -- 992/992
Computed: 133/399 -- 447/447
Computed: 134/399 -- 1019/1019
Computed: 135/399 -- 1106/1106
Computed: 136/399 -- 1689/1689
Computed: 137/399 -- 1080/1080
Computed: 138/399 -- 1066/1066
Computed: 139/399 -- 1063/1063
Computed: 140/399 -- 418/418
Computed: 141/399 -- 1539/1539
Computed: 142/399 -- 1160/1160
Computed: 143/399 -- 796/796
Computed: 144/399 -- 1550/1550
Computed: 145/399 -- 1112/1112
Computed: 146/399 -- 1323/1323
Computed: 147/399 -- 497/497
Computed: 148/399 -- 1608/1608
Computed: 149/399 -- 433/433
Computed: 150/399 -- 1002/1002
Computed: 151/399 -- 720/720
Computed: 152/399 -- 724/724
Computed: 153/399 -- 1206/1206
Computed: 154/399 -- 609/609
Computed: 155/399 -- 833/833
Computed: 156/399 -- 1139/1139
Computed: 157/399 -- 1305/1305
Computed: 158/399 -- 1110/1110
Computed: 159/399 -- 1330/1330
Computed: 160/399 -- 486/486
Computed: 161/399 -- 317/317
Computed: 162/399 -- 819/819
Computed: 163/399 -- 421/421
Computed: 164/399 -- 523/523
Computed: 165/399 -- 1116/1116
Computed: 166/399 -- 1670/1670
Computed: 167/399 -- 252/252
Computed: 168/399 -- 472/472
Computed: 169/399 -- 549/549
Computed: 170/399 -- 2453/2453
Computed: 171/399 -- 122/122
Computed: 172/399 -- 1177/1177
Computed: 173/399 -- 680/680
Computed: 174/399 -- 343/343
Computed: 175/399 -- 144/144
Computed: 176/399 -- 1153/1153
Computed: 177/399 -- 1264/1264
Computed: 178/399 -- 960/960
Computed: 179/399 -- 765/765
Computed: 180/399 -- 664/664
Computed: 181/399 -- 493/493
Computed: 182/399 -- 2504/2504
Computed: 183/399 -- 142/142
Computed: 184/399 -- 1232/1232
Computed: 185/399 -- 2674/2674
Computed: 186/399 -- 304/304
Computed: 187/399 -- 674/674
Computed: 188/399 -- 315/315
Computed: 189/399 -- 750/750
Computed: 190/399 -- 825/825
Computed: 191/399 -- 1324/1324
Computed: 192/399 -- 745/745
Computed: 193/399 -- 449/449
Computed: 194/399 -- 1198/1198
Computed: 195/399 -- 264/264
Computed: 196/399 -- 1540/1540
Computed: 197/399 -- 599/599
Computed: 198/399 -- 258/258
Computed: 199/399 -- 378/378
Computed: 200/399 -- 1297/1297
Computed: 201/399 -- 983/983
Computed: 202/399 -- 367/367
Computed: 203/399 -- 276/276
Computed: 204/399 -- 1050/1050
Computed: 205/399 -- 1390/1390
Computed: 206/399 -- 1369/1369
Computed: 207/399 -- 1357/1357
Computed: 208/399 -- 514/514
Computed: 209/399 -- 203/203
Computed: 210/399 -- 286/286
Computed: 211/399 -- 894/894
Computed: 212/399 -- 433/433
Computed: 213/399 -- 374/374
Computed: 214/399 -- 766/766
Computed: 215/399 -- 260/260
Computed: 216/399 -- 392/392
Computed: 217/399 -- 744/744
Computed: 218/399 -- 169/169
Computed: 219/399 -- 1108/1108
Computed: 220/399 -- 1361/1361
Computed: 221/399 -- 1368/1368
Computed: 222/399 -- 446/446
Computed: 223/399 -- 362/362
Computed: 224/399 -- 155/155
Computed: 225/399 -- 1107/1107
Computed: 226/399 -- 567/567
Computed: 227/399 -- 394/394
Computed: 228/399 -- 151/151
Computed: 229/399 -- 346/346
Computed: 230/399 -- 232/232
Computed: 231/399 -- 1587/1587
Computed: 232/399 -- 270/270
Computed: 233/399 -- 177/177
Computed: 234/399 -- 1153/1153
Computed: 235/399 -- 741/741
Computed: 236/399 -- 2076/2076
Computed: 237/399 -- 391/391
Computed: 238/399 -- 222/222
Computed: 239/399 -- 485/485
Computed: 240/399 -- 1366/1366
Computed: 241/399 -- 711/711
Computed: 242/399 -- 309/309
Computed: 243/399 -- 545/545
Computed: 244/399 -- 978/978
Computed: 245/399 -- 304/304
Computed: 246/399 -- 1230/1230
Computed: 247/399 -- 806/806
Computed: 248/399 -- 954/954
Computed: 249/399 -- 934/934
Computed: 250/399 -- 948/948
Computed: 251/399 -- 542/542
Computed: 252/399 -- 455/455
Computed: 253/399 -- 492/492
Computed: 254/399 -- 799/799
Computed: 255/399 -- 1970/1970
Computed: 256/399 -- 389/389
Computed: 257/399 -- 728/728
Computed: 258/399 -- 847/847
Computed: 259/399 -- 206/206
Computed: 260/399 -- 770/770
Computed: 261/399 -- 1209/1209
Computed: 262/399 -- 648/648
Computed: 263/399 -- 386/386
Computed: 264/399 -- 1094/1094
Computed: 265/399 -- 659/659
Computed: 266/399 -- 1408/1408
Computed: 267/399 -- 1004/1004
Computed: 268/399 -- 1113/1113
Computed: 269/399 -- 735/735
Computed: 270/399 -- 991/991
Computed: 271/399 -- 262/262
Computed: 272/399 -- 1309/1309
Computed: 273/399 -- 646/646
Computed: 274/399 -- 375/375
Computed: 275/399 -- 345/345
Computed: 276/399 -- 1119/1119
Computed: 277/399 -- 897/897
Computed: 278/399 -- 155/155
Computed: 279/399 -- 428/428
Computed: 280/399 -- 991/991
Computed: 281/399 -- 652/652
Computed: 282/399 -- 351/351
Computed: 283/399 -- 319/319
Computed: 284/399 -- 831/831
Computed: 285/399 -- 723/723
Computed: 286/399 -- 1146/1146
Computed: 287/399 -- 1205/1205
Computed: 288/399 -- 937/937
Computed: 289/399 -- 310/310
Computed: 290/399 -- 697/697
Computed: 291/399 -- 934/934
Computed: 292/399 -- 979/979
Computed: 293/399 -- 899/899
Computed: 294/399 -- 1095/1095
Computed: 295/399 -- 645/645
Computed: 296/399 -- 609/609
Computed: 297/399 -- 333/333
Computed: 298/399 -- 409/409
Computed: 299/399 -- 306/306
Computed: 300/399 -- 491/491
Computed: 301/399 -- 1050/1050
Computed: 302/399 -- 671/671
Computed: 303/399 -- 974/974
Computed: 304/399 -- 382/382
Computed: 305/399 -- 277/277
Computed: 306/399 -- 545/545
Computed: 307/399 -- 443/443
Computed: 308/399 -- 936/936
Computed: 309/399 -- 494/494
Computed: 310/399 -- 480/480
Computed: 311/399 -- 1175/1175
Computed: 312/399 -- 1397/1397
Computed: 313/399 -- 1442/1442
Computed: 314/399 -- 894/894
Computed: 315/399 -- 424/424
Computed: 316/399 -- 1354/1354
Computed: 317/399 -- 1162/1162
Computed: 318/399 -- 1252/1252
Computed: 319/399 -- 1168/1168
Computed: 320/399 -- 665/665
Computed: 321/399 -- 650/650
Computed: 322/399 -- 487/487
Computed: 323/399 -- 1491/1491
Computed: 324/399 -- 646/646
Computed: 325/399 -- 898/898
Computed: 326/399 -- 1649/1649
Computed: 327/399 -- 762/762
Computed: 328/399 -- 1125/1125
Computed: 329/399 -- 2005/2005
Computed: 330/399 -- 1409/1409
Computed: 331/399 -- 410/410
Computed: 332/399 -- 2918/2918^[
Computed: 333/399 -- 862/862
Computed: 334/399 -- 1147/1147
Computed: 335/399 -- 2167/2167
Computed: 336/399 -- 914/914
Computed: 337/399 -- 1324/1324
Computed: 338/399 -- 633/633
Computed: 339/399 -- 971/971
Computed: 340/399 -- 1115/1115
Computed: 341/399 -- 942/942
Computed: 342/399 -- 2692/2692
Computed: 343/399 -- 1184/1184
Computed: 344/399 -- 1674/1674
Computed: 345/399 -- 572/572
Computed: 346/399 -- 1477/1477
Computed: 347/399 -- 731/731
Computed: 348/399 -- 1658/1658
Computed: 349/399 -- 998/998
Computed: 350/399 -- 944/944
Computed: 351/399 -- 523/523
Computed: 352/399 -- 1129/1129
Computed: 353/399 -- 687/687
Computed: 354/399 -- 920/920
Computed: 355/399 -- 1187/1187
Computed: 356/399 -- 1257/1257
Computed: 357/399 -- 813/813
Computed: 358/399 -- 280/280
Computed: 359/399 -- 1744/1744
Computed: 360/399 -- 1370/1370
Computed: 361/399 -- 1668/1668
Computed: 362/399 -- 539/539
Computed: 363/399 -- 269/269
Computed: 364/399 -- 525/525
Computed: 365/399 -- 3369/3369
Computed: 366/399 -- 479/479
Computed: 367/399 -- 377/377
Computed: 368/399 -- 327/327
Computed: 369/399 -- 1573/1573
Computed: 370/399 -- 444/444
Computed: 371/399 -- 573/573
Computed: 372/399 -- 718/718
Computed: 373/399 -- 157/157
Computed: 374/399 -- 255/255
Computed: 375/399 -- 1770/1770
Computed: 376/399 -- 1024/1024
Computed: 377/399 -- 3775/3775
Computed: 378/399 -- 1517/1517
Computed: 379/399 -- 925/925
Computed: 380/399 -- 844/844
Computed: 381/399 -- 700/700
Computed: 382/399 -- 875/875
Computed: 383/399 -- 981/981
Computed: 384/399 -- 524/524
Computed: 385/399 -- 1554/1554
Computed: 386/399 -- 1903/1903
Computed: 387/399 -- 985/985
Computed: 388/399 -- 969/969
Computed: 389/399 -- 1332/1332
Computed: 390/399 -- 839/839
Computed: 391/399 -- 939/939
Computed: 392/399 -- 2264/2264
Computed: 393/399 -- 431/431
Computed: 394/399 -- 1134/1134
Computed: 395/399 -- 1745/1745
Computed: 396/399 -- 1960/1960
Computed: 397/399 -- 589/589
Computed: 398/399 -- 367/367
Computed: 399/399 -- 674/674
(dsmil) binli@gpu:/data/binli/Projects/dsmil-wsi$ python train_tcga.py --dataset=Camelyon16 --num_classes=1 --num_epochs=200
Epoch [1/200] train loss: 0.4415 test loss: 0.3614, average score: 0.9125, AUC: class-0>>0.9361979166666666
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.6130727529525757
Epoch [2/200] train loss: 0.3795 test loss: 0.2925, average score: 0.9000, AUC: class-0>>0.9375
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.3142208456993103
Epoch [3/200] train loss: 0.3724 test loss: 0.2863, average score: 0.9125, AUC: class-0>>0.9401041666666666
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.33977454900741577
Epoch [4/200] train loss: 0.3593 test loss: 0.2844, average score: 0.9250, AUC: class-0>>0.94921875
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.6717859506607056
Epoch [5/200] train loss: 0.3344 test loss: 0.3512, average score: 0.9250, AUC: class-0>>0.9322916666666666
Epoch [6/200] train loss: 0.3547 test loss: 0.2760, average score: 0.9250, AUC: class-0>>0.9440104166666666
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.2326982021331787
Epoch [7/200] train loss: 0.3467 test loss: 0.2914, average score: 0.9250, AUC: class-0>>0.9388020833333334
Epoch [8/200] train loss: 0.3391 test loss: 0.2737, average score: 0.9250, AUC: class-0>>0.9479166666666667
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.32525622844696045
Epoch [9/200] train loss: 0.3306 test loss: 0.2676, average score: 0.9250, AUC: class-0>>0.9401041666666666
Epoch [10/200] train loss: 0.3433 test loss: 0.2693, average score: 0.9125, AUC: class-0>>0.9453124999999999
Epoch [11/200] train loss: 0.3264 test loss: 0.2735, average score: 0.9125, AUC: class-0>>0.935546875
Epoch [12/200] train loss: 0.3294 test loss: 0.2929, average score: 0.9250, AUC: class-0>>0.9388020833333334
Epoch [13/200] train loss: 0.3339 test loss: 0.2603, average score: 0.9250, AUC: class-0>>0.9348958333333334
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.746952474117279
Epoch [14/200] train loss: 0.3271 test loss: 0.3287, average score: 0.9250, AUC: class-0>>0.9381510416666666
Epoch [15/200] train loss: 0.3305 test loss: 0.2936, average score: 0.9250, AUC: class-0>>0.9446614583333333
Epoch [16/200] train loss: 0.3278 test loss: 0.2895, average score: 0.9125, AUC: class-0>>0.9381510416666666
Epoch [17/200] train loss: 0.3151 test loss: 0.2614, average score: 0.9125, AUC: class-0>>0.9524739583333333
Best model saved at: weights/08042021/1.pth
Best thresholds ===>>> class-0>>0.6126333475112915
Epoch [18/200] train loss: 0.3102 test loss: 0.2877, average score: 0.9000, AUC: class-0>>0.9440104166666666
Epoch [19/200] train loss: 0.3147 test loss: 0.2733, average score: 0.9250, AUC: class-0>>0.9381510416666667
Epoch [20/200] train loss: 0.3163 test loss: 0.3308, average score: 0.9125, AUC: class-0>>0.9388020833333334
Epoch [21/200] train loss: 0.3121 test loss: 0.2725, average score: 0.9250, AUC: class-0>>0.9173177083333334
Epoch [22/200] train loss: 0.3094 test loss: 0.2858, average score: 0.9250, AUC: class-0>>0.9134114583333334
Epoch [23/200] train loss: 0.3177 test loss: 0.2778, average score: 0.9250, AUC: class-0>>0.9290364583333333
Epoch [24/200] train loss: 0.3069 test loss: 0.3139, average score: 0.9250, AUC: class-0>>0.923828125
Epoch [25/200] train loss: 0.3048 test loss: 0.3042, average score: 0.9250, AUC: class-0>>0.9342447916666666
Epoch [26/200] train loss: 0.3112 test loss: 0.2768, average score: 0.9250, AUC: class-0>>0.921875
Epoch [27/200] train loss: 0.3077 test loss: 0.2886, average score: 0.9250, AUC: class-0>>0.9303385416666666
Epoch [28/200] train loss: 0.2990 test loss: 0.2840, average score: 0.9250, AUC: class-0>>0.9427083333333334
Epoch [29/200] train loss: 0.2977 test loss: 0.2903, average score: 0.9125, AUC: class-0>>0.916015625
Epoch [30/200] train loss: 0.3006 test loss: 0.3392, average score: 0.9250, AUC: class-0>>0.9147135416666667
Epoch [31/200] train loss: 0.2937 test loss: 0.2864, average score: 0.9125, AUC: class-0>>0.91796875
Epoch [32/200] train loss: 0.3008 test loss: 0.2811, average score: 0.9125, AUC: class-0>>0.9290364583333334
Epoch [33/200] train loss: 0.3006 test loss: 0.2880, average score: 0.9125, AUC: class-0>>0.9270833333333334
Epoch [34/200] train loss: 0.2839 test loss: 0.2812, average score: 0.9250, AUC: class-0>>0.927734375
Epoch [35/200] train loss: 0.3092 test loss: 0.2790, average score: 0.9125, AUC: class-0>>0.927734375
Epoch [36/200] train loss: 0.2988 test loss: 0.2939, average score: 0.9250, AUC: class-0>>0.9283854166666666
Epoch [37/200] train loss: 0.3008 test loss: 0.3070, average score: 0.9250, AUC: class-0>>0.931640625
Epoch [38/200] train loss: 0.3026 test loss: 0.2883, average score: 0.9250, AUC: class-0>>0.9329427083333333
Epoch [39/200] train loss: 0.2944 test loss: 0.2866, average score: 0.9125, AUC: class-0>>0.9075520833333334
Epoch [40/200] train loss: 0.2930 test loss: 0.2905, average score: 0.9125, AUC: class-0>>0.9361979166666666
Epoch [41/200] train loss: 0.2835 test loss: 0.3083, average score: 0.9000, AUC: class-0>>0.919921875
Epoch [42/200] train loss: 0.2954 test loss: 0.2831, average score: 0.9000, AUC: class-0>>0.9212239583333333
Epoch [43/200] train loss: 0.2999 test loss: 0.2911, average score: 0.9250, AUC: class-0>>0.93359375
Epoch [44/200] train loss: 0.2929 test loss: 0.2814, average score: 0.9125, AUC: class-0>>0.9375
Epoch [45/200] train loss: 0.2712 test loss: 0.2966, average score: 0.9250, AUC: class-0>>0.9134114583333334
Epoch [46/200] train loss: 0.2922 test loss: 0.2915, average score: 0.9125, AUC: class-0>>0.9322916666666667
Epoch [47/200] train loss: 0.2796 test loss: 0.3115, average score: 0.9000, AUC: class-0>>0.9329427083333334
Epoch [48/200] train loss: 0.2879 test loss: 0.2950, average score: 0.9250, AUC: class-0>>0.9368489583333334
Epoch [49/200] train loss: 0.2815 test loss: 0.4382, average score: 0.9125, AUC: class-0>>0.9374999999999999
Epoch [50/200] train loss: 0.2931 test loss: 0.2933, average score: 0.9250, AUC: class-0>>0.9270833333333333
Epoch [51/200] train loss: 0.2773 test loss: 0.3016, average score: 0.9250, AUC: class-0>>0.9244791666666666
Epoch [52/200] train loss: 0.2714 test loss: 0.3638, average score: 0.9000, AUC: class-0>>0.9199218750000001
Epoch [53/200] train loss: 0.2750 test loss: 0.3377, average score: 0.9250, AUC: class-0>>0.9264322916666666
Epoch [54/200] train loss: 0.2729 test loss: 0.4489, average score: 0.9000, AUC: class-0>>0.9303385416666666
Epoch [55/200] train loss: 0.2769 test loss: 0.3092, average score: 0.9000, AUC: class-0>>0.9309895833333334
Epoch [56/200] train loss: 0.2756 test loss: 0.3131, average score: 0.9250, AUC: class-0>>0.9290364583333334
Epoch [57/200] train loss: 0.2742 test loss: 0.3207, average score: 0.9125, AUC: class-0>>0.9283854166666667
Epoch [58/200] train loss: 0.2691 test loss: 0.3198, average score: 0.9125, AUC: class-0>>0.9251302083333333
Epoch [59/200] train loss: 0.2771 test loss: 0.3081, average score: 0.9125, AUC: class-0>>0.9303385416666666
Epoch [60/200] train loss: 0.2721 test loss: 0.3262, average score: 0.9250, AUC: class-0>>0.9127604166666666
Epoch [61/200] train loss: 0.2688 test loss: 0.2998, average score: 0.9125, AUC: class-0>>0.9316406249999999
Epoch [62/200] train loss: 0.2695 test loss: 0.3507, average score: 0.9250, AUC: class-0>>0.9283854166666667
Epoch [63/200] train loss: 0.2726 test loss: 0.3290, average score: 0.9000, AUC: class-0>>0.9322916666666667
Epoch [64/200] train loss: 0.2713 test loss: 0.3113, average score: 0.9125, AUC: class-0>>0.9127604166666666
Epoch [65/200] train loss: 0.2593 test loss: 0.3340, average score: 0.9125, AUC: class-0>>0.9296875
Epoch [66/200] train loss: 0.2717 test loss: 0.3208, average score: 0.9250, AUC: class-0>>0.9270833333333334
Epoch [67/200] train loss: 0.2662 test loss: 0.3133, average score: 0.9000, AUC: class-0>>0.9296875000000001
Epoch [68/200] train loss: 0.2630 test loss: 0.3174, average score: 0.9000, AUC: class-0>>0.9257812499999999
Epoch [69/200] train loss: 0.2610 test loss: 0.3079, average score: 0.9000, AUC: class-0>>0.9303385416666665
Epoch [70/200] train loss: 0.2591 test loss: 0.3199, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [71/200] train loss: 0.2716 test loss: 0.3405, average score: 0.9000, AUC: class-0>>0.9342447916666667
Epoch [72/200] train loss: 0.2636 test loss: 0.3438, average score: 0.9000, AUC: class-0>>0.9303385416666666
Epoch [73/200] train loss: 0.2640 test loss: 0.3221, average score: 0.9125, AUC: class-0>>0.927734375
Epoch [74/200] train loss: 0.2661 test loss: 0.3076, average score: 0.9125, AUC: class-0>>0.9316406250000001
Epoch [75/200] train loss: 0.2639 test loss: 0.3051, average score: 0.8875, AUC: class-0>>0.93359375
Epoch [76/200] train loss: 0.2595 test loss: 0.3528, average score: 0.9000, AUC: class-0>>0.9303385416666666
Epoch [77/200] train loss: 0.2623 test loss: 0.3130, average score: 0.9000, AUC: class-0>>0.9316406249999999
Epoch [78/200] train loss: 0.2551 test loss: 0.3128, average score: 0.9000, AUC: class-0>>0.9355468750000001
Epoch [79/200] train loss: 0.2555 test loss: 0.3232, average score: 0.9125, AUC: class-0>>0.9322916666666666
Epoch [80/200] train loss: 0.2661 test loss: 0.3183, average score: 0.9250, AUC: class-0>>0.9290364583333334
Epoch [81/200] train loss: 0.2554 test loss: 0.3336, average score: 0.9125, AUC: class-0>>0.9283854166666666
Epoch [82/200] train loss: 0.2558 test loss: 0.3237, average score: 0.9000, AUC: class-0>>0.923828125
Epoch [83/200] train loss: 0.2549 test loss: 0.3248, average score: 0.9125, AUC: class-0>>0.9264322916666666
Epoch [84/200] train loss: 0.2627 test loss: 0.3356, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [85/200] train loss: 0.2446 test loss: 0.3446, average score: 0.9125, AUC: class-0>>0.9322916666666666
Epoch [86/200] train loss: 0.2468 test loss: 0.3612, average score: 0.9125, AUC: class-0>>0.9270833333333334
Epoch [87/200] train loss: 0.2602 test loss: 0.3395, average score: 0.9000, AUC: class-0>>0.9251302083333333
Epoch [88/200] train loss: 0.2453 test loss: 0.3324, average score: 0.9125, AUC: class-0>>0.9192708333333333
Epoch [89/200] train loss: 0.2569 test loss: 0.3161, average score: 0.9000, AUC: class-0>>0.9277343750000001
Epoch [90/200] train loss: 0.2470 test loss: 0.3799, average score: 0.9125, AUC: class-0>>0.9270833333333334
Epoch [91/200] train loss: 0.2472 test loss: 0.3160, average score: 0.9000, AUC: class-0>>0.9309895833333334
Epoch [92/200] train loss: 0.2479 test loss: 0.3569, average score: 0.9125, AUC: class-0>>0.9147135416666666
Epoch [93/200] train loss: 0.2408 test loss: 0.3352, average score: 0.9000, AUC: class-0>>0.9231770833333334
Epoch [94/200] train loss: 0.2536 test loss: 0.3270, average score: 0.9000, AUC: class-0>>0.923828125
Epoch [95/200] train loss: 0.2488 test loss: 0.3343, average score: 0.9000, AUC: class-0>>0.9225260416666666
Epoch [96/200] train loss: 0.2539 test loss: 0.3446, average score: 0.8875, AUC: class-0>>0.9309895833333334
Epoch [97/200] train loss: 0.2445 test loss: 0.3459, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [98/200] train loss: 0.2465 test loss: 0.3235, average score: 0.8875, AUC: class-0>>0.9309895833333334
Epoch [99/200] train loss: 0.2453 test loss: 0.3327, average score: 0.9000, AUC: class-0>>0.921875
Epoch [100/200] train loss: 0.2492 test loss: 0.3358, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [101/200] train loss: 0.2430 test loss: 0.3208, average score: 0.9000, AUC: class-0>>0.9290364583333334
Epoch [102/200] train loss: 0.2476 test loss: 0.3228, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [103/200] train loss: 0.2461 test loss: 0.3487, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [104/200] train loss: 0.2424 test loss: 0.3521, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [105/200] train loss: 0.2403 test loss: 0.3233, average score: 0.9000, AUC: class-0>>0.9283854166666667
Epoch [106/200] train loss: 0.2360 test loss: 0.3241, average score: 0.8875, AUC: class-0>>0.9316406250000001
Epoch [107/200] train loss: 0.2389 test loss: 0.3653, average score: 0.9125, AUC: class-0>>0.9160156249999999
Epoch [108/200] train loss: 0.2421 test loss: 0.3302, average score: 0.9000, AUC: class-0>>0.9296874999999999
Epoch [109/200] train loss: 0.2396 test loss: 0.3363, average score: 0.9000, AUC: class-0>>0.9283854166666667
Epoch [110/200] train loss: 0.2346 test loss: 0.3328, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [111/200] train loss: 0.2391 test loss: 0.3495, average score: 0.9000, AUC: class-0>>0.9225260416666667
Epoch [112/200] train loss: 0.2354 test loss: 0.3688, average score: 0.9000, AUC: class-0>>0.9147135416666666
Epoch [113/200] train loss: 0.2454 test loss: 0.3270, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [114/200] train loss: 0.2392 test loss: 0.3291, average score: 0.9000, AUC: class-0>>0.92578125
Epoch [115/200] train loss: 0.2382 test loss: 0.3424, average score: 0.9000, AUC: class-0>>0.923828125
Epoch [116/200] train loss: 0.2371 test loss: 0.3521, average score: 0.9000, AUC: class-0>>0.9264322916666666
Epoch [117/200] train loss: 0.2344 test loss: 0.3374, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [118/200] train loss: 0.2343 test loss: 0.3425, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [119/200] train loss: 0.2355 test loss: 0.3361, average score: 0.8875, AUC: class-0>>0.9264322916666666
Epoch [120/200] train loss: 0.2343 test loss: 0.3269, average score: 0.9000, AUC: class-0>>0.9283854166666667
Epoch [121/200] train loss: 0.2345 test loss: 0.3398, average score: 0.9000, AUC: class-0>>0.9251302083333334
Epoch [122/200] train loss: 0.2266 test loss: 0.3686, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [123/200] train loss: 0.2356 test loss: 0.3420, average score: 0.9000, AUC: class-0>>0.9251302083333334
Epoch [124/200] train loss: 0.2309 test loss: 0.3392, average score: 0.9000, AUC: class-0>>0.9257812500000001
Epoch [125/200] train loss: 0.2311 test loss: 0.3391, average score: 0.9000, AUC: class-0>>0.9257812500000001
Epoch [126/200] train loss: 0.2333 test loss: 0.3435, average score: 0.9000, AUC: class-0>>0.92578125
Epoch [127/200] train loss: 0.2304 test loss: 0.3518, average score: 0.9000, AUC: class-0>>0.9251302083333333
Epoch [128/200] train loss: 0.2310 test loss: 0.3348, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [129/200] train loss: 0.2313 test loss: 0.3408, average score: 0.9000, AUC: class-0>>0.9257812499999999
Epoch [130/200] train loss: 0.2293 test loss: 0.3355, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [131/200] train loss: 0.2310 test loss: 0.3370, average score: 0.9000, AUC: class-0>>0.9264322916666667
Epoch [132/200] train loss: 0.2305 test loss: 0.3376, average score: 0.8875, AUC: class-0>>0.9283854166666666
Epoch [133/200] train loss: 0.2282 test loss: 0.3497, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [134/200] train loss: 0.2341 test loss: 0.3411, average score: 0.8875, AUC: class-0>>0.9290364583333334
Epoch [135/200] train loss: 0.2303 test loss: 0.3407, average score: 0.8875, AUC: class-0>>0.9244791666666666
Epoch [136/200] train loss: 0.2271 test loss: 0.3679, average score: 0.9000, AUC: class-0>>0.9205729166666666
Epoch [137/200] train loss: 0.2266 test loss: 0.3423, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [138/200] train loss: 0.2282 test loss: 0.3450, average score: 0.9000, AUC: class-0>>0.9257812499999999
Epoch [139/200] train loss: 0.2259 test loss: 0.3446, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [140/200] train loss: 0.2254 test loss: 0.3429, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [141/200] train loss: 0.2242 test loss: 0.3415, average score: 0.9000, AUC: class-0>>0.9264322916666666
Epoch [142/200] train loss: 0.2251 test loss: 0.3477, average score: 0.9000, AUC: class-0>>0.9238281249999999
Epoch [143/200] train loss: 0.2238 test loss: 0.3550, average score: 0.9000, AUC: class-0>>0.9225260416666666
Epoch [144/200] train loss: 0.2254 test loss: 0.3569, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [145/200] train loss: 0.2279 test loss: 0.3435, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [146/200] train loss: 0.2244 test loss: 0.3384, average score: 0.8875, AUC: class-0>>0.9296875
Epoch [147/200] train loss: 0.2213 test loss: 0.3483, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [148/200] train loss: 0.2291 test loss: 0.3400, average score: 0.9000, AUC: class-0>>0.9290364583333334
Epoch [149/200] train loss: 0.2241 test loss: 0.3398, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [150/200] train loss: 0.2212 test loss: 0.3430, average score: 0.9000, AUC: class-0>>0.9290364583333334
Epoch [151/200] train loss: 0.2233 test loss: 0.3420, average score: 0.9000, AUC: class-0>>0.9277343750000001
Epoch [152/200] train loss: 0.2241 test loss: 0.3452, average score: 0.8875, AUC: class-0>>0.923828125
Epoch [153/200] train loss: 0.2207 test loss: 0.3477, average score: 0.8875, AUC: class-0>>0.9290364583333334
Epoch [154/200] train loss: 0.2198 test loss: 0.3459, average score: 0.9000, AUC: class-0>>0.92578125
Epoch [155/200] train loss: 0.2218 test loss: 0.3489, average score: 0.9000, AUC: class-0>>0.9257812499999999
Epoch [156/200] train loss: 0.2229 test loss: 0.3416, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [157/200] train loss: 0.2211 test loss: 0.3429, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [158/200] train loss: 0.2213 test loss: 0.3444, average score: 0.8875, AUC: class-0>>0.9251302083333334
Epoch [159/200] train loss: 0.2210 test loss: 0.3436, average score: 0.9000, AUC: class-0>>0.9270833333333333
Epoch [160/200] train loss: 0.2212 test loss: 0.3483, average score: 0.9000, AUC: class-0>>0.9290364583333334
Epoch [161/200] train loss: 0.2203 test loss: 0.3510, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [162/200] train loss: 0.2188 test loss: 0.3534, average score: 0.9000, AUC: class-0>>0.9290364583333334
Epoch [163/200] train loss: 0.2212 test loss: 0.3443, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [164/200] train loss: 0.2183 test loss: 0.3452, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [165/200] train loss: 0.2193 test loss: 0.3465, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [166/200] train loss: 0.2205 test loss: 0.3439, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [167/200] train loss: 0.2197 test loss: 0.3460, average score: 0.8875, AUC: class-0>>0.9290364583333334
Epoch [168/200] train loss: 0.2179 test loss: 0.3452, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [169/200] train loss: 0.2203 test loss: 0.3472, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [170/200] train loss: 0.2200 test loss: 0.3456, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [171/200] train loss: 0.2185 test loss: 0.3457, average score: 0.9000, AUC: class-0>>0.9277343750000001
Epoch [172/200] train loss: 0.2200 test loss: 0.3458, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [173/200] train loss: 0.2190 test loss: 0.3464, average score: 0.8875, AUC: class-0>>0.927734375
Epoch [174/200] train loss: 0.2196 test loss: 0.3454, average score: 0.8875, AUC: class-0>>0.9270833333333334
Epoch [175/200] train loss: 0.2184 test loss: 0.3467, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [176/200] train loss: 0.2189 test loss: 0.3451, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [177/200] train loss: 0.2187 test loss: 0.3454, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [178/200] train loss: 0.2186 test loss: 0.3453, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [179/200] train loss: 0.2178 test loss: 0.3459, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [180/200] train loss: 0.2178 test loss: 0.3452, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [181/200] train loss: 0.2190 test loss: 0.3457, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [182/200] train loss: 0.2173 test loss: 0.3449, average score: 0.9000, AUC: class-0>>0.9277343750000001
Epoch [183/200] train loss: 0.2180 test loss: 0.3446, average score: 0.9000, AUC: class-0>>0.9283854166666666
Epoch [184/200] train loss: 0.2177 test loss: 0.3453, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [185/200] train loss: 0.2172 test loss: 0.3454, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [186/200] train loss: 0.2173 test loss: 0.3462, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [187/200] train loss: 0.2177 test loss: 0.3463, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [188/200] train loss: 0.2173 test loss: 0.3473, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [189/200] train loss: 0.2176 test loss: 0.3468, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [190/200] train loss: 0.2173 test loss: 0.3469, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [191/200] train loss: 0.2162 test loss: 0.3492, average score: 0.9000, AUC: class-0>>0.9277343749999999
Epoch [192/200] train loss: 0.2182 test loss: 0.3471, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [193/200] train loss: 0.2172 test loss: 0.3473, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [194/200] train loss: 0.2170 test loss: 0.3472, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [195/200] train loss: 0.2166 test loss: 0.3471, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [196/200] train loss: 0.2167 test loss: 0.3470, average score: 0.9000, AUC: class-0>>0.9270833333333334
Epoch [197/200] train loss: 0.2173 test loss: 0.3463, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [198/200] train loss: 0.2165 test loss: 0.3460, average score: 0.9000, AUC: class-0>>0.927734375
Epoch [199/200] train loss: 0.2165 test loss: 0.3466, average score: 0.9000, AUC: class-0>>0.927734375
(dsmil) binli@gpu:/data/binli/Projects/dsmil-wsi$
Hi, what is the background threshold used in the paper for Camelyon16? Thank you