gpt_academic
gpt_academic copied to clipboard
[Bug]: 找不到GPU
Installation Method | 安装方法与平台
Docker-Compose(Linux)
Version | 版本
Latest | 最新版
OS | 操作系统
Linux
Describe the bug | 简述
这是我的docker-compose.yml version: '3' services: gpt_academic_with_latex: image: ghcr.io/binary-husky/gpt_academic_with_latex:master environment: API_KEY: 'xxxx' USE_PROXY: 'False' proxies: '{"http": "xxxx", "https": "xxxx"}' API_URL_REDIRECT: '{"xxxxx": "xxxxx"}' LLM_MODEL: xxxx' AVAIL_LLM_MODELS: '["xxxxxx"]' GEMINI_API_KEY: 'xxxxxx' LOCAL_MODEL_DEVICE: 'cuda' DEFAULT_WORKER_NUM: '10' WEB_PORT: '12303'
ports:
- "12303:12303"
command: >
bash -c "python3 -u main.py"
实际上我的电脑上是有独显的,我也能使用docker运行ollama
Screen Shot | 有帮助的截图
Terminal Traceback & Material to Help Reproduce Bugs | 终端traceback(如有) + 帮助我们复现的测试材料样本(如有)
WARNING:root:No GPU found. Conversion on CPU is very slow. usage: nougat [-h] [--batchsize BATCHSIZE] [--checkpoint CHECKPOINT] [--model MODEL] [--out OUT] [--recompute] [--full-precision] [--no-markdown] [--markdown] [--no-skipping] [--pages PAGES] pdf [pdf ...] nougat: error: the following arguments are required: pdf
也许我找到问题了,容器内的CUDA版本和主机的不一样,主机的是12.4,容器内的是12.1
nvidia-cublas-cu12==12.4.5.8 is available (you have 12.1.3.1) nvidia-cuda-cupti-cu12==12.4.127 is available (you have 12.1.105) nvidia-cuda-nvrtc-cu12==12.4.127 is available (you have 12.1.105) nvidia-cuda-runtime-cu12==12.4.127 is available (you have 12.1.105)
docker-compose少写了英伟达运行时的参数吧
这是我的docker-compose.yml:
version: '3'
services:
gpt_academic_full_capability:
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
environment:
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
API_KEY: ' sk-114514 '
LLM_MODEL: ' gpt-3.5-turbo '
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4-turbo-preview","claude-3-sonnet-20240229","claude-3-opus-20240229", "glm-4"] '
DEFAULT_WORKER_NUM: ' 10 '
WEB_PORT: ' 1919 '
THEME: ' Default '
LOCAL_MODEL_DEVICE: ' cuda '
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
#network_mode: "host"
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
ports:
- "1919:1919" # 12345必须与WEB_PORT相互对应
# 启动容器后,运行main.py主程序
command: >
bash -c "python3 -u main.py"
我主机也是12.4版本的CUDA,但是启动容器的时候还是看得到容器内CUDA正常运行的
$ pacman -Qs cuda
local/cuda 12.4.1-1
NVIDIA's GPU programming toolkit
docker-compose少写了英伟达运行时的参数吧
这是我的docker-compose.yml:
version: '3' services: gpt_academic_full_capability: image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master environment: # 请查阅 `config.py`或者 github wiki 以查看所有的配置信息 API_KEY: ' sk-114514 ' LLM_MODEL: ' gpt-3.5-turbo ' AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4-turbo-preview","claude-3-sonnet-20240229","claude-3-opus-20240229", "glm-4"] ' DEFAULT_WORKER_NUM: ' 10 ' WEB_PORT: ' 1919 ' THEME: ' Default ' LOCAL_MODEL_DEVICE: ' cuda ' deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: [gpu] # 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合 #network_mode: "host" # 【WEB_PORT暴露方法2: 适用于所有系统】端口映射 ports: - "1919:1919" # 12345必须与WEB_PORT相互对应 # 启动容器后,运行main.py主程序 command: > bash -c "python3 -u main.py"
我主机也是12.4版本的CUDA,但是启动容器的时候还是看得到容器内CUDA正常运行的
$ pacman -Qs cuda local/cuda 12.4.1-1 NVIDIA's GPU programming toolkit
好的,感谢,解决了