generative_ai_with_langchain
generative_ai_with_langchain copied to clipboard
chapter 3 - Using Hugging Face
Hi, The following code snippet from Chapter 3 : from langchain.llms import HuggingFaceHub llm = HuggingFaceHub( model_kwargs={"temperature": 0.5, "max_length": 64}, repo_id="google/flan-t5-xxl" ) prompt = "In which country is Tokyo?" completion = llm(prompt) print(completion)
Is giving:
ValueError Traceback (most recent call last) Cell In[6], line 2 1 prompt = "In which country is Tokyo?" ----> 2 completion = llm(prompt) 3 print(completion)
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\base.py:825, in BaseLLM.call(self, prompt, stop, callbacks, tags, metadata, **kwargs)
818 if not isinstance(prompt, str):
819 raise ValueError(
820 "Argument prompt
is expected to be a string. Instead found "
821 f"{type(prompt)}. If you want to run the LLM on multiple prompts, use "
822 "generate
instead."
823 )
824 return (
--> 825 self.generate(
826 [prompt],
827 stop=stop,
828 callbacks=callbacks,
829 tags=tags,
830 metadata=metadata,
831 **kwargs,
832 )
833 .generations[0][0]
834 .text
835 )
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\base.py:621, in BaseLLM.generate(self, prompts, stop, callbacks, tags, metadata, **kwargs)
612 raise ValueError(
613 "Asked to cache, but no cache found at langchain.cache
."
614 )
615 run_managers = [
616 callback_manager.on_llm_start(
617 dumpd(self), [prompt], invocation_params=params, options=options
618 )[0]
619 for callback_manager, prompt in zip(callback_managers, prompts)
620 ]
--> 621 output = self._generate_helper(
622 prompts, stop, run_managers, bool(new_arg_supported), **kwargs
623 )
624 return output
625 if len(missing_prompts) > 0:
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\base.py:523, in BaseLLM._generate_helper(self, prompts, stop, run_managers, new_arg_supported, **kwargs) 521 for run_manager in run_managers: 522 run_manager.on_llm_error(e) --> 523 raise e 524 flattened_outputs = output.flatten() 525 for manager, flattened_output in zip(run_managers, flattened_outputs):
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\base.py:510, in BaseLLM._generate_helper(self, prompts, stop, run_managers, new_arg_supported, **kwargs) 500 def _generate_helper( 501 self, 502 prompts: List[str], (...) 506 **kwargs: Any, 507 ) -> LLMResult: 508 try: 509 output = ( --> 510 self._generate( 511 prompts, 512 stop=stop, 513 # TODO: support multiple run managers 514 run_manager=run_managers[0] if run_managers else None, 515 **kwargs, 516 ) 517 if new_arg_supported 518 else self._generate(prompts, stop=stop) 519 ) 520 except (KeyboardInterrupt, Exception) as e: 521 for run_manager in run_managers:
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\base.py:1000, in LLM._generate(self, prompts, stop, run_manager, **kwargs) 997 new_arg_supported = inspect.signature(self._call).parameters.get("run_manager") 998 for prompt in prompts: 999 text = ( -> 1000 self._call(prompt, stop=stop, run_manager=run_manager, **kwargs) 1001 if new_arg_supported 1002 else self._call(prompt, stop=stop, **kwargs) 1003 ) 1004 generations.append([Generation(text=text)]) 1005 return LLMResult(generations=generations)
File D:\generative_ai_with_langchain\pyenv\Lib\site-packages\langchain\llms\huggingface_hub.py:112, in HuggingFaceHub._call(self, prompt, stop, run_manager, **kwargs) 110 response = self.client(inputs=prompt, params=params) 111 if "error" in response: --> 112 raise ValueError(f"Error raised by inference API: {response['error']}") 113 if self.client.task == "text-generation": 114 # Text generation return includes the starter text. 115 text = response[0]["generated_text"][len(prompt) :]
ValueError: Error raised by inference API: Service Unavailable