keyextract_word2vec
keyextract_word2vec copied to clipboard
基于word2vec的关键词提取
keyextract_word2vec
#基于Word2Vec的文本关键词抽取方法
大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。 可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。 没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。
但是,为什么要将它作为语言模型来看呢? 抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。
有心想了解这个系列的读者,有必要了解一下Word2Vec的数学原理。当然,Word2Vec出来已经有好几年了,介绍它的文章数不胜数,这里我推荐peghoty大神的系列博客: http://blog.csdn.net/itplus/article/details/37969519 为了方便读者阅读,我还收集了两个对应的PDF文件: word2vector中的数学原理详解.pdf https://spaces.ac.cn/usr/uploads/2017/04/2833204610.pdf
Deep Learning 实战之 word2vec.pdf https://spaces.ac.cn/usr/uploads/2017/04/146269300.pdf
其中第一个就是推荐的peghoty大神的系列博客的PDF版本。当然,英文好的话,可以直接看Word2Vec的原始论文: [1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
简单来说,Word2Vec就是“两个训练方案+两个提速手段”,所以严格来讲,它有四个备选的模型。两个训练方案分别是CBOW和Skip-Gram。
用通俗的语言来说,就是“周围词叠加起来预测当前词”(P(W_t|Context))和“当前词分别来预测周围词”(P(W_others|W_t)),也就是条件概率建模问题了;两个提速手段,分别是层次Softmax和负样本采样。层次Softmax是对Softmax的简化,直接将预测概率的效率从O(|V|)降为O(log2|V|),但相对来说,精度会比原生的Softmax略差;负样本采样则采用了相反的思路,它把原来的输入和输出联合起来当作输入,然后做一个二分类来打分,这样子我们可以看成是联合概率P(W_t,Context)和P(W_others,W_t)的建模了,正样本就用语料出现过的,负样本就随机抽若干。更多的内容还是去细看peghoty大神的系列博客比较好,我也是从中学习Word2Vec的实现细节的。
最后,要指出的是,本系列所使用的模型是“Skip-Gram + 层次Softmax”的组合,也就是要用到P(W_others|W_t)这个模型的本身,而不仅仅是词向量。所以,要接着看本系列的读者,需要对Skip-Gram模型有些了解,并且对层次Softmax的构造和实现方式有些印象。
##1.Word2Vec词向量表示
众所周知,机器学习模型的输入必须是数值型数据,文本无法直接作为模型的输入,需要首先将其转化成数学形式。基于Word2Vec词聚类方法正是一种机器学习方法,需要将候选关键词进行向量化表示,因此要先构建Word2Vec词向量模型,从而抽取出候选关键词的词向量。
Word2Vec是当时在Google任职的Mikolov等人于2013年发布的一款词向量训练工具,一经发布便在自然语言处理领域得到了广泛的应用。该工具利用浅层神经网络模型自动学习词语在语料库中的出现情况,把词语嵌入到一个高维的空间中,通常在100-500维,在新的高维空间中词语被表示为词向量的形式。与传统的文本表示方式相比,Word2Vec生成的词向量表示,词语之间的语义关系在高维空间中得到了较好的体现,即语义相近的词语在高维空间中的距离更近;同时,使用词向量避免了词语表示的“维度灾难”问题。
就实际操作而言,特征词向量的抽取是基于已经训练好的词向量模型,词向量模型的训练需要海量的语料才能达到较好的效果,而wiki中文语料是公认的大型中文语料,本文拟从wiki中文语料生成的词向量中抽取本文语料的特征词向量。
##2.代码执行步骤如下:
(1)运行get_vector.py读取样本源文件data.txt;
(2)获得源文件的分词文件,即data_result.txt,包括分词、去重、去停用词
(3)运行train_word2vec.py,训练词向量模型,得到data.model以及data.vector
(4)运行www.py,读取测试文本test_data.txt,然后就可以提取出对应的关键词