Baichuan-13B
Baichuan-13B copied to clipboard
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
I used peft
to fine tune baichuan llm via lora way.
I ran the same fine-tuning code as 7B for 13B, but something went wrong:
/opt/conda/envs/trl/lib/python3.10/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
warnings.warn(
/opt/conda/envs/trl/lib/python3.10/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn("None of the inputs have requires_grad=True. Gradients will be None")
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[21], line 1
----> 1 trainer.train()
2 model.save_pretrained("baichuan13b/baichuan13b/")
File /opt/conda/envs/trl/lib/python3.10/site-packages/transformers/trainer.py:1537, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
1532 self.model_wrapped = self.model
1534 inner_training_loop = find_executable_batch_size(
1535 self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
1536 )
-> 1537 return inner_training_loop(
1538 args=args,
1539 resume_from_checkpoint=resume_from_checkpoint,
1540 trial=trial,
1541 ignore_keys_for_eval=ignore_keys_for_eval,
1542 )
File /opt/conda/envs/trl/lib/python3.10/site-packages/transformers/trainer.py:1802, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)
1799 self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
1801 with self.accelerator.accumulate(model):
-> 1802 tr_loss_step = self.training_step(model, inputs)
1804 if (
1805 args.logging_nan_inf_filter
1806 and not is_torch_tpu_available()
1807 and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
1808 ):
1809 # if loss is nan or inf simply add the average of previous logged losses
1810 tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
File /opt/conda/envs/trl/lib/python3.10/site-packages/transformers/trainer.py:2658, in Trainer.training_step(self, model, inputs)
2656 scaled_loss.backward()
2657 else:
-> 2658 self.accelerator.backward(loss)
2660 return loss.detach() / self.args.gradient_accumulation_steps
File /opt/conda/envs/trl/lib/python3.10/site-packages/accelerate/accelerator.py:1842, in Accelerator.backward(self, loss, **kwargs)
1840 return
1841 elif self.scaler is not None:
-> 1842 self.scaler.scale(loss).backward(**kwargs)
1843 else:
1844 loss.backward(**kwargs)
File /opt/conda/envs/trl/lib/python3.10/site-packages/torch/_tensor.py:487, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
477 if has_torch_function_unary(self):
478 return handle_torch_function(
479 Tensor.backward,
480 (self,),
(...)
485 inputs=inputs,
486 )
--> 487 torch.autograd.backward(
488 self, gradient, retain_graph, create_graph, inputs=inputs
489 )
File /opt/conda/envs/trl/lib/python3.10/site-packages/torch/autograd/__init__.py:200, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
195 retain_graph = create_graph
197 # The reason we repeat same the comment below is that
198 # some Python versions print out the first line of a multi-line function
199 # calls in the traceback and some print out the last line
--> 200 Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
201 tensors, grad_tensors_, retain_graph, create_graph, inputs,
202 allow_unreachable=True, accumulate_grad=True)
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
could you please help me to fix this, thx
Can you provide Code snippets to reproduce ?
Can you provide Code snippets to reproduce ?
OK, here is the code snippets:
model_id ='baichuan-inc/Baichuan-13B-Base'
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_8bit=True,device_map='auto', trust_remote_code=True)
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
...
trainer.train()
In, addition:
peft 0.4.0.dev0
accelerate 0.21.0.dev0
bitsandbytes 0.39.0
transformers 4.31.0.dev0
transformers-stream-generator 0.0.4
I also encountered this issue, if there are any progress, please let me know, thx.
@vpegasus
I also meet this error. you could add model.enable_input_require_grads()
and try it
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_8bit=True,device_map='auto', trust_remote_code=True)
model.enable_input_require_grads()
I try it and I got this error
/workspace/work/LMFlow-main-baichuan/examples/finetune.py:66 in
63
64
65 if __name__ == '__main__':
❱ 66 main()
67
/workspace/work/LMFlow-main-baichuan/examples/finetune.py:59 in main
56 print("model", model_args)
57 print("data", data_args)
58 print("pipe", pipeline_args)
❱ 59 model = AutoModel.get_model(model_args)
60
61 # Finetuning
62 tuned_model = finetuner.tune(model=model, dataset=dataset)
/root/anaconda3/envs/lmflow_v3/lib/python3.9/site-packages/lmflow-0.0.1-py3.9.egg/lmflow/models/
auto_model.py:16 in get_model
13 def get_model(self, model_args, *args, **kwargs):
14 arch_type = model_args.arch_type
15 if arch_type == "decoder_only":
❱ 16 return HFDecoderModel(model_args, *args, **kwargs)
17 elif arch_type == "text_regression":
18 return TextRegressionModel(model_args, *args, **kwargs)
19 elif arch_type == "encoder_decoder":
/root/anaconda3/envs/lmflow_v3/lib/python3.9/site-packages/lmflow-0.0.1-py3.9.egg/lmflow/models/
hf_decoder_model.py:233 in init
230 #print("debug", embedding_size, len(tokenizer))
231 if len(tokenizer) > embedding_size:
232 model.resize_token_embeddings(len(tokenizer))
❱ 233 model.enable_input_require_grads()
234 self.config = config
235 self.backend_model = model
236 self.tune_strategy = tune_strategy
/root/anaconda3/envs/lmflow_v3/lib/python3.9/site-packages/transformers/modeling_utils.py:1174
in enable_input_require_grads
1171 def make_inputs_require_grads(module, input, output):
1172 output.requires_grad_(True)
1173
❱ 1174 self._require_grads_hook = self.get_input_embeddings().register_forward_hook(mak
1175
1176 def disable_input_require_grads(self):
1177 """
/root/anaconda3/envs/lmflow_v3/lib/python3.9/site-packages/transformers/modeling_utils.py:1192
in get_input_embeddings
1189 base_model = getattr(self, self.base_model_prefix, self)
1190 print("debug", base_model, self.base_model_prefix, self)
1191 if base_model is not self:
❱ 1192 return base_model.get_input_embeddings()
1193 else:
1194 raise NotImplementedError
1195
/root/anaconda3/envs/lmflow_v3/lib/python3.9/site-packages/transformers/modeling_utils.py:1194
in get_input_embeddings
1191 if base_model is not self:
1192 return base_model.get_input_embeddings()
1193 else:
❱ 1194 raise NotImplementedError
1195
1196 def set_input_embeddings(self, value: nn.Module):
1197 """
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
NotImplementedError
we've made update today. Pull the newest version of code from Hugging Face. And try our tested third party fine-tuning tool in README if you're interested.
I encounter the same error. updating the latest modeling_baichuan.py still not work. Then I add model.enable_input_require_grads() , it works. Besides, my lora_target_modules only has 'o_proj' , maybe you can try less target_modules.
Still have the problem +1