speciesgeocodeR
speciesgeocodeR copied to clipboard
Preparation of species occurrences and distribution data for the use in phylogenetic analyses. SpeciesgeocodeR is built for data exploration and data analysis and especially suited for biogeographical...
speciesgeocodeR v. 2.0-10
NOTE: With the changes imminent to r-spatial, speciesgeocoder will be defunct and will be archived end of September 2023. All coordinate cleaning functions have been moved to the CoordinateCleaner package!
An R-package for the preparation for geographic point occurrence data in biogeographic analyses. A major focus is on securing data quality and providing ready to use output for biogeographic software. The main functions include:
- Point-in-polygon classification
- Distibution range estimation
- Species richness maps
- Range size calculations
- Input for PyRate DES
- Automated conservation assessment
Documentation
Short instructions are given below, see the wiki pages for more information and detailed tutorials. For comments, questions and bug reports, please use speciesgeocodeRatgooglegroups.
Installation
Stable from CRAN
install.packages("speciesgeocodeR")
library(speciesgeocodeR)
Developemental using devtools
devtools::install_github("azizka/speciesgeocodeR")
library(speciesgeocodeR)
Usage
Point to Polygon classification
sp.class <- SpGeoCod(lemurs, mdg_biomes, areanames = "name")
summary(sp.class)
plot(sp.class)
plot(sp.class, type = "speciesrichness")
WriteOut(sp.class, type = "nexus")
Distibution range estimation
data(lemurs)
rang <- CalcRange(lemurs)
plotHull(rang)
Species Richness maps
data(lemurs)
sp.ras <- RichnessGrid(lemurs, reso = 1)
plot(sp.ras)
Range size calculation
On a local to regional scale speciesgeocodeR can calculate species range size as a alpha hull based on a data.frame
of point occurrences. The CalcRange
function can return range polygons for each species in the dataset, or calculate range sizes in sqkm (Extent of Occurrence and Area of Occupancy). The output can be used to calculate a species richness grid based on the range sizes using the RangeRichness
function.
data(lemurs)
rang <- CalcRange(lemurs)
Species richness from ranges
data(lemurs)
rang <- CalcRange(lemurs)
sp.rich <- RangeRichness(rang, reso = 0.1)
plot(sp.rich)
Calculate range size
data(lemurs)
rang <- CalcRangeSize(lemurs, method = "eoo_pseudospherical")
head(rang)
Input for the Pyrates DES
#simulate the input data
fos <- data.frame(scientificName = rep(letters[1:4],25),
earliestAge = runif(100, min = 60, max = 100),
latestAge = runif(100, min = 0, max = 60),
higherGeography = sort(rep(c("A", "B"), 50)))
rec <- data.frame(scientificName = c(letters[1:4], letters[1:2]),
higherGeography = c(rep("A",4), rep("B", 2)))
#create DES input object
exp1 <- DESin(fos, rec, bin.size = 2, reps = 3)
#explore data
summary(exp1)
#write data to disk for use in pyrate
write.DESin(exp1, file = "Example1_DES_in")
Automated conservation assessment
occ.exmpl<- data.frame(species = sample(letters, size = 250, replace = TRUE),
decimallongitude = runif(n = 250, min = 42, max = 51),
decimallatitude = runif(n = 250, min = -26, max = -11))
rang <- CalcRange(occ.exmpl, method = 'pseudospherical', terrestrial = FALSE)
IUCNest(rang)
More
Other versions of speciesgeocodeR include:
- A web interface that allows the analysis of data online: https://portal.bils.se/speciesgeocoder/tool
- A equivalent python package written by Mats Töpel https://github.com/mtop/speciesgeocoder
Citation
Töpel M, Zizka A, Calió MF, Scharn R, Silvestro D, Antonelli A (2016) SpeciesGeoCoder: Fast Categorisation of Species Occurrences for Analyses of Biodiversity, Biogeography, Ecology and Evolution. Systematic Biology.