ailia-models-tflite
ailia-models-tflite copied to clipboard
Quantized version of model library
ailia-models-tflite
Quantized tflite models for ailia TFLite Runtime
About ailia TFLite Runtime
ailia TFLite Runtime is a TensorFlow Lite compatible inference engine. Written in C99, it supports inference in Non-OS and RTOS. It also supports high-speed inference using Intel MKL on a PC. In the Android environment, we provide a Unity Package, which also supports NPU inference using NNAPI.
Install
NEW - ailia TFLite Runtime can now be installed with "pip3 install ailia_tflite" !
Run the following command. The Python version is compatible with Windows, macOS, and Linux. It is also planned to support Arm Linux in the future.
pip3 install ailia_tflite
Models
Background removal
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
u2net | U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection | TensorFlow | 1.1.0 |
Depth estimation
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
Midas | Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer | Pytorch | 1.1.7 |
Face detection
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
BlazeFace | PINTO_model_zoo | TensorFlow | 1.0.0 |
Face recognition
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
Face Mesh | PINTO_model_zoo | TensorFlow | 1.0.0 |
![]() |
face_classification | Real-time face detection and emotion/gender classification | TensorFlow | 1.1.1 |
Hand recognition
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
Blaze Hand | PINTO_model_zoo | TensorFlow | 1.0.0 |
Image classification
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
MobileNet | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications | Keras | 1.0.0 |
![]() |
MobileNetV2 | MobileNetV2: Inverted Residuals and Linear Bottlenecks | Keras | 1.0.0 |
![]() |
ResNet50 | tf.keras.applications.resnet50.ResNet50 | Keras | 1.0.0 |
![]() |
EfficientnetLite | efficientnet-lite-keras | Keras | 1.0.0 |
![]() |
SqueezeNet | keras_squeezenet2 | Keras | 1.0.0 |
![]() |
vgg16 | VGG16 - Torchvision | Pytorch | 1.1.7 for int8, 1.1.9 for float |
![]() |
googlenet | GOOGLENET | Pytorch | 1.1.10 |
Image segmentation
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
DeepLabv3+ | PINTO_model_zoo | TensorFlow | 1.0.0 |
![]() |
HRNet-Semantic-Segmentation | HRNet-Semantic-Segmentation | TensorFlow | 1.1.0 |
Object detection
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
YOLOv3 tiny | tensorflow-yolov4-tflite | TensorFlow | 1.0.0 |
![]() |
YOLOX | YOLOX | Pytorch | 1.1.1 |
![]() |
EfficientDetLite | PINTO_model_zoo | TensorFlow | 1.1.3 |
Pose estimation
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
pose_resnet | Simple Baselines for Human Pose Estimation and Tracking | Pytorch | 1.1.7 for int8, 1.1.9 for float |
Super resolution
Model | Reference | Exported From | Supported Ailia Version | |
---|---|---|---|---|
![]() |
ESPCN | Image Super-Resolution using an Efficient Sub-Pixel CNN | TensorFlow | 1.1.0 |
![]() |
srresnet | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network | Pytorch | 1.1.10 |
Options
You can benchmark with the -b option. You can use the official TensorFlow Lite with the --tflite option.
Launchar
You can use cui launchar.
python3 launchar.py
i.MX8 Support Status
See NXP