sagemaker-python-sdk
sagemaker-python-sdk copied to clipboard
Getting an FileNotFoundError: [Errno 2] No such file or directory: 'inference.py'
Describe the bug
Probably this is not a Bug, but when I try to deploy the Sagemaker Pytorch model, I am getting a FileNotFoundError: [Errno 2] No such file or directory: 'inference.py'
error
To reproduce
- Create 'my_model.tar.gz' file according to the instructions on this page
- upload to s3 My folder structure as follow
.
├── best.pt
├── coco.yaml
└── code
├── common.py
├── experimental.py
├── general.py
├── inference.py
├── loss.py
├── requirements.txt
├── torch_utils.py
└── yolo.py
- Run
predictor = pytorch_model.deploy(instance_type='ml.c4.xlarge', initial_instance_count=1)
Expected behavior successful deploy
Screenshots or logs
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[14], line 1
----> 1 predictor = pytorch_model.deploy(instance_type='ml.c4.xlarge', initial_instance_count=1)
File ~/.local/lib/python3.8/site-packages/sagemaker/model.py:1260, in Model.deploy(self, initial_instance_count, instance_type, serializer, deserializer, accelerator_type, endpoint_name, tags, kms_key, wait, data_capture_config, async_inference_config, serverless_inference_config, volume_size, model_data_download_timeout, container_startup_health_check_timeout, inference_recommendation_id, explainer_config, **kwargs)
1257 if self._base_name is not None:
1258 self._base_name = "-".join((self._base_name, compiled_model_suffix))
-> 1260 self._create_sagemaker_model(
1261 instance_type, accelerator_type, tags, serverless_inference_config
1262 )
1264 serverless_inference_config_dict = (
1265 serverless_inference_config._to_request_dict() if is_serverless else None
1266 )
1267 production_variant = sagemaker.production_variant(
1268 self.name,
1269 instance_type,
(...)
1275 container_startup_health_check_timeout=container_startup_health_check_timeout,
1276 )
File ~/.local/lib/python3.8/site-packages/sagemaker/model.py:693, in Model._create_sagemaker_model(self, instance_type, accelerator_type, tags, serverless_inference_config)
671 def _create_sagemaker_model(
672 self, instance_type=None, accelerator_type=None, tags=None, serverless_inference_config=None
673 ):
674 """Create a SageMaker Model Entity
675
676 Args:
(...)
691 not provided in serverless inference. So this is used to find image URIs.
692 """
--> 693 container_def = self.prepare_container_def(
694 instance_type,
695 accelerator_type=accelerator_type,
696 serverless_inference_config=serverless_inference_config,
697 )
699 if not isinstance(self.sagemaker_session, PipelineSession):
700 # _base_name, model_name are not needed under PipelineSession.
701 # the model_data may be Pipeline variable
702 # which may break the _base_name generation
703 self._ensure_base_name_if_needed(
704 image_uri=container_def["Image"],
705 script_uri=self.source_dir,
706 model_uri=self.model_data,
707 )
File ~/.local/lib/python3.8/site-packages/sagemaker/pytorch/model.py:298, in PyTorchModel.prepare_container_def(self, instance_type, accelerator_type, serverless_inference_config)
290 deploy_image = self.serving_image_uri(
291 region_name,
292 instance_type,
293 accelerator_type=accelerator_type,
294 serverless_inference_config=serverless_inference_config,
295 )
297 deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
--> 298 self._upload_code(deploy_key_prefix, repack=self._is_mms_version())
299 deploy_env = dict(self.env)
300 deploy_env.update(self._script_mode_env_vars())
File ~/.local/lib/python3.8/site-packages/sagemaker/model.py:626, in Model._upload_code(self, key_prefix, repack)
611 self.uploaded_code = fw_utils.UploadedCode(
612 s3_prefix=repacked_model_data, script_name=os.path.basename(self.entry_point)
613 )
615 LOGGER.info(
616 "Repacking model artifact (%s), script artifact "
617 "(%s), and dependencies (%s) "
(...)
623 repacked_model_data,
624 )
--> 626 utils.repack_model(
627 inference_script=self.entry_point,
628 source_directory=self.source_dir,
629 dependencies=self.dependencies,
630 model_uri=self.model_data,
631 repacked_model_uri=repacked_model_data,
632 sagemaker_session=self.sagemaker_session,
633 kms_key=self.model_kms_key,
634 )
636 self.repacked_model_data = repacked_model_data
File ~/.local/lib/python3.8/site-packages/sagemaker/utils.py:516, in repack_model(inference_script, source_directory, dependencies, model_uri, repacked_model_uri, sagemaker_session, kms_key)
513 with _tmpdir(directory=local_download_dir) as tmp:
514 model_dir = _extract_model(model_uri, sagemaker_session, tmp)
--> 516 _create_or_update_code_dir(
517 model_dir,
518 inference_script,
519 source_directory,
520 dependencies,
521 sagemaker_session,
522 tmp,
523 )
525 tmp_model_path = os.path.join(tmp, "temp-model.tar.gz")
526 with tarfile.open(tmp_model_path, mode="w:gz") as t:
File ~/.local/lib/python3.8/site-packages/sagemaker/utils.py:577, in _create_or_update_code_dir(model_dir, inference_script, source_directory, dependencies, sagemaker_session, tmp)
575 os.mkdir(code_dir)
576 try:
--> 577 shutil.copy2(inference_script, code_dir)
578 except FileNotFoundError:
579 if os.path.exists(os.path.join(code_dir, inference_script)):
File /usr/lib/python3.8/shutil.py:435, in copy2(src, dst, follow_symlinks)
433 if os.path.isdir(dst):
434 dst = os.path.join(dst, os.path.basename(src))
--> 435 copyfile(src, dst, follow_symlinks=follow_symlinks)
436 copystat(src, dst, follow_symlinks=follow_symlinks)
437 return dst
File /usr/lib/python3.8/shutil.py:264, in copyfile(src, dst, follow_symlinks)
262 os.symlink(os.readlink(src), dst)
263 else:
--> 264 with open(src, 'rb') as fsrc, open(dst, 'wb') as fdst:
265 # macOS
266 if _HAS_FCOPYFILE:
267 try:
FileNotFoundError: [Errno 2] No such file or directory: 'inference.py'
'''
**System information**
A description of your system. Please provide:
- **SageMaker Python SDK version**: 2.155.0
- **Framework name:**: PyTorch
- **Framework version**: 2.0.1+cu117
- **Python version**: 3.8.10
- **CPU or GPU**: GPU
- **Custom Docker image (Y/N)**: Y
Any help on this would be highly appreciated.
Facing the same issue!
Is there anyone who solve this problem? I have a same issue
I conjecture that you are compiling segamaker using a local environment. The reason for the issue is the absence of inference.py
.
When executing pytorch_model.deploy()
, it will initiate the Docker server image. Since I am using TensorFlow, it will launch the server image 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference:2.11-gpu
.
However, this image lacks "inference.py", resulting in a FileNotFoundError: [Errno 2] No such file or directory: 'inference.py'
error.
Solution:
Firstly, create ./code/inference.py
.
Refer to the following link for the code: https://github.com/aws/sagemaker-tensorflow-serving-container/blob/master/test/resources/examples/test1/inference.py
import json
from collections import namedtuple
Context = namedtuple('Context',
'model_name, model_version, method, rest_uri, grpc_uri, '
'custom_attributes, request_content_type, accept_header')
def input_handler(data, context):
if context.request_content_type == 'application/json':
d = data.read().decode('utf-8')
return d if len(d) else ''
if context.request_content_type == 'text/csv':
return json.dumps({
'instances': [float(x) for x in data.read().decode('utf-8').split(',')]
})
raise ValueError('{{"error": "unsupported content type {}"}}'.format(
context.request_content_type or "unknown"))
def output_handler(data, context):
if data.status_code != 200:
raise ValueError(data.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = data.content
return prediction, response_content_type
Next, deploy the model using the inference approach. The steps below demonstrate how to locally deploy the model using TensorFlow:
import os
from sagemaker.tensorflow import TensorFlowModel
model = TensorFlowModel(
entry_point='inference.py',
source_dir='./code',
role=os.environ['AWS_ROLE'],
model_data=f'{output}/model.tar.gz',
framework_version='2.11'
)
predictor = model.deploy(
initial_instance_count=1,
instance_type='local_gpu',
)
- The
./code/inference.py
will be automatically loaded into the server image. -
{output}/model.tar.gz
will be automatically loaded as the local model. - The
model.deploy()
command will successfully initiate the server image.
whats the solution?
I think i've figured it out ; you MUST create the app.py file WITHIN here :
file browser pane, browse to "./lab1/packages/{account_id}-lab1_code-1.0/src/
Some tutorials say here: "In the file browser pane, browse to ./lab1/packages/{account_id}-lab1_code-1.0/. Find descriptor.json." BUT the right tutorial (https://catalog.workshops.aws/panorama-immersion-day/en-US/20-lab1-object-detection/21-lab1) correctly states to create and save the app.py txt file in ""./lab1/packages/{account_id}-lab1_code-1.0/src/" i.e. the SRC folder found in Lab 1.
Wrong version - https://explore.skillbuilder.aws/learn/course/17780/play/93251/aws-panorama-building-edge-computer-vision-cv-applications Right version - https://catalog.workshops.aws/panorama-immersion-day/en-US/20-lab1-object-detection/21-lab1
Also facing this issue. I think the docs on https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#bring-your-own-model may be faulty as well?
I also encountered the same problem. I tried from notebook instance. Here is my implementation:
import sagemaker
from sagemaker.pytorch import PyTorchModel
from sagemaker.serverless import ServerlessInferenceConfig
sagemaker_session = sagemaker.Session()
role = sagemaker.get_execution_role()
model = PyTorchModel(
entry_point='inference.py',
role=role,
model_data='s3://***/model.tar.gz',
framework_version='2.1',
py_version='py310',
)
serverless_config = ServerlessInferenceConfig(
max_concurrency=1,
memory_size_in_mb=3072,
)
deploy_params = {
'instance_type': 'ml.t3.medium',
'initial_instance_count': 1,
'serverless_inference_config': serverless_config,
}
predictor = model.deploy(**deploy_params)
I solved this problem by changing how to create tar.gz file.
The key point is to use tar
command in the same directory as the model file like:
$ tar czvf ../model.tar.gz *
code/
code/requirements.txt
code/inference.py
model.pth
I failed when I run tar
command in the parent directory of the model file:
$tar czvf model.tar.gz model
model/
model/model.pth
model/code/
model/code/requirements.txt
model/code/inference.py
As you can see, these results are different each other.