Auto-PyTorch
Auto-PyTorch copied to clipboard
Generate a leaderboard for each model?
This is actually a question rather than an issue. I also tried other AutoML frameworks such as AutoGluon
and H2O AutoML
, which both have functions producing a leader board (roc_auc, accuracy, log loss, etc.). However, I do not find an equivalent function on Auto-PyTorch
in the official documentation. I wonder if such a function exit in Auto-PyTorch
?
Below I'm showing examples of leaderboard in AutoGluon
and H2O AutoML
.
Leaderboard from AutoGluon
:
model score_test roc_auc accuracy log_loss score_val pred_time_test pred_time_val fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
1: LightGBMXT_BAG_L1 0.7590175 0.7590175 0.9742501 -0.1082179 0.7645787 24.7286382 28.34122 1.159951e+02 24.72863817 28.3412232 1.159951e+02 1 TRUE 3
2: WeightedEnsemble_L2 0.7588045 0.7588045 0.9742501 -0.1082454 0.7656998 401.1412535 219.29514 2.083729e+04 0.01033139 0.2191315 1.726000e+02 2 TRUE 12
3: NeuralNetFastAI_BAG_L1 0.7587008 0.7587008 0.9742501 -0.1082499 0.7648229 209.7337284 72.73679 6.181634e+03 209.73372841 72.7367890 6.181634e+03 1 TRUE 9
4: NeuralNetTorch_BAG_L1 0.7586281 0.7586281 0.9742501 -0.1082789 0.7656290 353.2530944 174.99615 2.044177e+04 353.25309443 174.9961455 2.044177e+04 1 TRUE 10
5: LightGBM_BAG_L1 0.7580392 0.7580392 0.9742501 -0.1083533 0.7637019 26.2219682 18.38476 8.965047e+01 26.22196817 18.3847609 8.965047e+01 1 TRUE 4
6: LightGBMLarge_BAG_L1 0.7574986 0.7574986 0.9742501 -0.1084190 0.7630075 21.6558595 25.69510 1.332672e+02 21.65585947 25.6951005 1.332672e+02 1 TRUE 11
7: ExtraTreesGini_BAG_L1 0.7317531 0.7317531 0.9741663 -0.1527889 0.7362975 0.4827056 18.03142 8.914248e+00 0.48270559 18.0314159 8.914248e+00 1 TRUE 7
8: RandomForestEntr_BAG_L1 0.7315053 0.7315053 0.9741607 -0.1523725 0.7367013 0.5803573 19.19548 8.536943e+00 0.58035731 19.1954811 8.536943e+00 1 TRUE 6
9: ExtraTreesEntr_BAG_L1 0.7313867 0.7313867 0.9741719 -0.1529712 0.7365097 0.4960597 17.40264 9.324817e+00 0.49605966 17.4026434 9.324817e+00 1 TRUE 8
10: RandomForestGini_BAG_L1 0.7313856 0.7313856 0.9741607 -0.1524167 0.7365686 0.4857991 19.06845 8.353514e+00 0.48579907 19.0684481 8.353514e+00 1 TRUE 5
11: KNeighborsDist_BAG_L1 0.5295357 0.5295357 0.9742501 -0.7495739 0.5245484 404.8888049 490.56608 5.202553e-01 404.88880491 490.5660815 5.202553e-01 1 TRUE 2
12: KNeighborsUnif_BAG_L1 0.5295357 0.5295357 0.9742501 -0.7495739 0.5245486 421.0486317 1249.74371 5.273466e-01 421.04863167 1249.7437119 5.273466e-01 1 TRUE 1
Leaderboard from H2O AutoML
:
model_id auc logloss aucpr mean_per_class_error rmse mse training_time_ms predict_time_per_row_ms algo
1: XGBoost_grid_1_AutoML_4_20230314_14900_model_2 0.6417932 0.4666353 0.3618462 0.4057249 0.3836492 0.1471867 845 0.004340 XGBoost
2: GBM_2_AutoML_4_20230314_14900 0.6412184 0.4667908 0.3611882 0.4052551 0.3837011 0.1472265 602 0.017406 GBM
3: GBM_3_AutoML_4_20230314_14900 0.6411061 0.4669249 0.3608521 0.4050711 0.3837799 0.1472870 613 0.012203 GBM
4: XGBoost_3_AutoML_4_20230314_14900 0.6406661 0.4669883 0.3610508 0.4064628 0.3837821 0.1472887 986 0.003698 XGBoost
5: GBM_grid_1_AutoML_4_20230314_14900_model_6 0.6406521 0.4670791 0.3608027 0.4064283 0.3838409 0.1473338 627 0.011967 GBM
---
239: DeepLearning_grid_1_AutoML_4_20230314_14900_model_177 0.4058350 2.4122755 0.1671561 0.5000000 0.4448776 0.1979161 28876 0.006443 DeepLearning
240: DeepLearning_grid_1_AutoML_4_20230314_14900_model_75 0.3926166 2.2398423 0.1600879 0.5000000 0.4448339 0.1978772 36780 0.007232 DeepLearning
241: DeepLearning_grid_1_AutoML_4_20230314_14900_model_191 0.3900886 3.0261471 0.1664013 0.5000000 0.4447404 0.1977940 71510 0.006048 DeepLearning
242: DeepLearning_grid_1_AutoML_4_20230314_14900_model_127 0.3887585 4.0422234 0.1596719 0.5000000 0.4448826 0.1979205 37300 0.006333 DeepLearning
243: DeepLearning_grid_1_AutoML_4_20230314_14900_model_173 0.3759081 2.3878755 0.1563064 0.5000000 0.4448267 0.1978708 33531 0.005443 DeepLearning