tner icon indicating copy to clipboard operation
tner copied to clipboard

Issue in Inference

Open sushgandhi opened this issue 2 years ago • 0 comments

Just experimenting with this. Tried to install tner and load model.

getting error for tokenizer file not found. same error when trying to use transformers lib here https://huggingface.co/tner/deberta-v3-large-fin

`--------------------------------------------------------------------------- Exception Traceback (most recent call last) Cell In[16], line 1 ----> 1 model = TransformersNER("tner/deberta-v3-large-fin")

File ~file_path/lib/python3.8/site-packages/tner/ner_model.py:103, in TransformersNER.init(self, model, max_length, crf, use_auth_token, label2id, non_entity_symbol) 101 # load pre processor 102 if self.crf_layer is not None: --> 103 self.tokenizer = NERTokenizer( 104 self.model_name, 105 id2label=self.id2label, 106 padding_id=self.label2id[self.non_entity_symbol], 107 use_auth_token=use_auth_token) 108 else: 109 self.tokenizer = NERTokenizer(self.model_name, id2label=self.id2label, use_auth_token=use_auth_token)

File ~file_path/lib/python3.8/site-packages/tner/ner_tokenizer.py:40, in NERTokenizer.init(self, tokenizer_name, id2label, padding_id, use_auth_token, is_xlnet) 37 self.tokenizer = AutoTokenizer.from_pretrained( 38 tokenizer_name, use_auth_token=use_auth_token) 39 except Exception: ---> 40 self.tokenizer = AutoTokenizer.from_pretrained( 41 tokenizer_name, use_auth_token=use_auth_token, local_files_only=True) 42 if self.tokenizer.pad_token is None: 43 self.tokenizer.pad_token = PAD_TOKEN_LABEL_ID

File ~file_path/lib/python3.8/site-packages/transformers/models/auto/tokenization_auto.py:658, in AutoTokenizer.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs) 654 if tokenizer_class is None: 655 raise ValueError( 656 f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." 657 ) --> 658 return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) 660 # Otherwise we have to be creative. 661 # if model is an encoder decoder, the encoder tokenizer class is used by default 662 if isinstance(config, EncoderDecoderConfig):

File ~file_path/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1804, in PreTrainedTokenizerBase.from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs) 1801 else: 1802 logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}") -> 1804 return cls._from_pretrained( 1805 resolved_vocab_files, 1806 pretrained_model_name_or_path, 1807 init_configuration, 1808 *init_inputs, 1809 use_auth_token=use_auth_token, 1810 cache_dir=cache_dir, 1811 local_files_only=local_files_only, 1812 _commit_hash=commit_hash, 1813 **kwargs, 1814 )

File ~file_path/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1959, in PreTrainedTokenizerBase._from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, local_files_only, _commit_hash, *init_inputs, **kwargs) 1957 # Instantiate tokenizer. 1958 try: -> 1959 tokenizer = cls(*init_inputs, **init_kwargs) 1960 except OSError: 1961 raise OSError( 1962 "Unable to load vocabulary from file. " 1963 "Please check that the provided vocabulary is accessible and not corrupted." 1964 )

File ~file_path/lib/python3.8/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py:133, in DebertaV2TokenizerFast.init(self, vocab_file, tokenizer_file, do_lower_case, split_by_punct, bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, **kwargs) 118 def init( 119 self, 120 vocab_file=None, (...) 131 **kwargs 132 ) -> None: --> 133 super().init( 134 vocab_file, 135 tokenizer_file=tokenizer_file, 136 do_lower_case=do_lower_case, 137 bos_token=bos_token, 138 eos_token=eos_token, 139 unk_token=unk_token, 140 sep_token=sep_token, 141 pad_token=pad_token, 142 cls_token=cls_token, 143 mask_token=mask_token, 144 split_by_punct=split_by_punct, 145 **kwargs, 146 ) 148 self.do_lower_case = do_lower_case 149 self.split_by_punct = split_by_punct

File ~file_path/lib/python3.8/site-packages/transformers/tokenization_utils_fast.py:111, in PreTrainedTokenizerFast.init(self, *args, **kwargs) 108 fast_tokenizer = copy.deepcopy(tokenizer_object) 109 elif fast_tokenizer_file is not None and not from_slow: 110 # We have a serialization from tokenizers which let us directly build the backend --> 111 fast_tokenizer = TokenizerFast.from_file(fast_tokenizer_file) 112 elif slow_tokenizer is not None: 113 # We need to convert a slow tokenizer to build the backend 114 fast_tokenizer = convert_slow_tokenizer(slow_tokenizer)

Exception: No such file or directory (os error 2)`

sushgandhi avatar Feb 08 '23 11:02 sushgandhi