qlora
qlora copied to clipboard
4 bit model cannot be trained by Huggingface Trainer
when I train a quantized model in the following way:
model_id = "openlm-research/open_llama_3b_600bt_preview"
# model_id = "EleutherAI/gpt-neo-1.3B"
# model_id = "gpt2-xl"
qlora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
)
training_args = TrainingArguments(
output_dir="/content/drive/MyDrive/Colab Notebooks/GPT_GAN/my_awesome_model",
learning_rate=2e-5,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
num_train_epochs=2,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=False,
fp16=True,
optim="paged_adamw_8bit",
)
trainer = transformers.Trainer(
model=model,
args=training_args,
train_dataset=tokenized_combined_qna["train"],
eval_dataset=tokenized_combined_qna["test"],
tokenizer=tokenizer,
# data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
it gives the following error:
ValueError: `.to` is not supported for `4-bit` or `8-bit` models. Please use the model as it is, since the model
has already been set to the correct devices and casted to the correct `dtype`.
is there a way to disable the default .to in transformers.Trainer?
It seems you're trying to train the original model, not the LoRA adapter. Based on the presence of qlora_config, I'm guessing you actually want to train the adapter. Try adding the following code after loading the model
from peft import prepare_model_for_kbit_training, get_peft_model
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, qlora_config)
it worked thank you so much!