GPDM
GPDM copied to clipboard
Original Pytorch implementation of the GPDM model introduced in "Generating natural images with direct patch distributions matching"
GPDM
Original Pytorch implementation of the GPDM algorithm introduced in
"Generating Natural Images with Direct Patch Distribution Matching"
Accepted to ECCV 2022
Live-demo | Paper

Video presentation
Run GPDM:
Reshuffling
$ python3 main.py data/images/SIGD16/7.jpg
| Input | Output |
|---|---|
![]() |
![]() |
Retargeting
$ python3 main.py data/images/SIGD16/4.jpg --init_from target --width_factor 1.5
| Input | Output |
|---|---|
![]() |
![]() |
Style transfer
$ python3 main.py data/images/style_transfer/style/mondrian.jpg --init_from data/images/style_transfer/content/trump.jpg --fine_dim 1024 --coarse_dim 256 --noise_sigma 0
| Input | init_from | Output |
|---|---|---|
![]() |
![]() |
![]() |
Texture synthesis
$ python3 main.py data/images/textures/cobbles.jpeg --width_factor 1.5 --height_factor 1.5
| Input | Output |
|---|---|
![]() |
![]() |
Reproduce paper tables
I added the Places50 and SIGD16 datasets from Drop-The-Gan and SinGAN so that results can be reproduced
Apart from the datasets from the paper I collected some interesting retargeting images in the images folder
In the images folder you can find images I collected from various repos and papers cited in my paper.
Cite
@inproceedings{elnekave2022generating,
title={Generating natural images with direct Patch Distributions Matching},
author={Elnekave, Ariel and Weiss, Yair},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XVII},
pages={544--560},
year={2022},
organization={Springer}
}









