distilabel icon indicating copy to clipboard operation
distilabel copied to clipboard

Questions about threads

Open YueWu0301 opened this issue 10 months ago • 8 comments

After I successfully ran the pipeline once, I can no longer reproduce my code, even if I changed my name, entered data and related parameters, and reported the following error. What may be the cause?

EOFError
Exception in thread Thread-1 (_monitor):
Traceback (most recent call last):
  File "/root/miniconda3/envs/datagen/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
    self.run()
  File "/root/miniconda3/envs/datagen/lib/python3.10/threading.py", line 953, in run
    self._target(*self._args, **self._kwargs)
  File "/root/miniconda3/envs/datagen/lib/python3.10/logging/handlers.py", line 1556, in _monitor
    record = self.dequeue(True)
  File "/root/miniconda3/envs/datagen/lib/python3.10/logging/handlers.py", line 1505, in dequeue
    return self.queue.get(block)
  File "/root/miniconda3/envs/datagen/lib/python3.10/multiprocessing/queues.py", line 103, in get
    res = self._recv_bytes()
  File "/root/miniconda3/envs/datagen/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "/root/miniconda3/envs/datagen/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes
    buf = self._recv(4)
  File "/root/miniconda3/envs/datagen/lib/python3.10/multiprocessing/connection.py", line 383, in _recv
    raise EOFError
EOFError
/root/miniconda3/envs/datagen/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 3 leaked semaphore objects to clean up at shutdown
  warnings.warn('resource_tracker: There appear to be %d '

YueWu0301 avatar Apr 19 '24 01:04 YueWu0301

Hi @YueWu0301, could you share the code of your pipeline?

gabrielmbmb avatar Apr 19 '24 12:04 gabrielmbmb

Hi @gabrielmbmb, I face the same problem. The code is as follows:

import json
import os
import pdb

import openai
from distilabel.llms import AzureOpenAILLM, OpenAILLM, vLLM
from distilabel.llms.mistral import MistralLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import (
    CombineColumns,
    KeepColumns,
    LoadDataFromDicts,
    LoadHubDataset,
    PreferenceToArgilla,
    TextGenerationToArgilla,
)
from distilabel.steps.tasks import TextGeneration, UltraFeedback
from distilabel.steps.tasks.text_generation import TextGeneration
from dotenv import load_dotenv

load_dotenv()


def read_jsonl_file(file_path):
    """
    Reads a .jsonl file where each line is a separate JSON object, and returns a list of dictionaries.

    :param file_path: str - The path to the .jsonl file.
    :return: list - A list containing dictionaries, each representing a JSON object from the file.
    """
    data = []
    try:
        with open(file_path, "r") as file:
            for line in file:

                json_object = json.loads(line.strip())
                json_object["instruction"] = json_object.pop("question")
                json_object["generations"] = json_object.pop("answer")
                data.append(json_object)
    except FileNotFoundError:
        print(f"Error: The file '{file_path}' does not exist.")
    except json.JSONDecodeError:
        print(f"Error: The file '{file_path}' contains invalid JSON.")
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
    return data


llm = AzureOpenAILLM(
    model=os.getenv("api_engine_gpt4"),
    base_url=os.getenv("api_base_gpt4"),
    api_key=os.getenv("api_key_gpt4"),
    api_version=os.getenv("api_version"),
)


with Pipeline(name="ultrafeedback-pipeline") as pipeline:

    data = read_jsonl_file(
        "data.json"
    )

    load_hub_dataset = LoadDataFromDicts(
        name="load_data",
        data=data,
        batch_size=1,
    )

    ultrafeedback = UltraFeedback(
        name="ultrafeedback_overall_rating",
        llm=llm,
        aspect="overall-rating",
        output_mappings={"model_name": "ultrafeedback_model"},
    )

    load_hub_dataset.connect(ultrafeedback)


dataset = pipeline.run(
    parameters={
        "ultrafeedback_overall_rating": {
            "generation_kwargs": {
                "max_new_tokens": 1024,
                "temperature": 0.7,
            },
        },
    }
)

tridungduong-unsw avatar Apr 20 '24 07:04 tridungduong-unsw

Hi, I think the issue might be caused because the run method is not being called within an if __name__ == "__main__": block. Could you try to update your script and check if you still have the error?

gabrielmbmb avatar Apr 20 '24 11:04 gabrielmbmb

Hi @gabrielmbmb, I'm currently trying to modify it as follows:

import json
import os
import pdb

import openai
from distilabel.llms import AzureOpenAILLM, OpenAILLM, vLLM
from distilabel.llms.mistral import MistralLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import (
    CombineColumns,
    KeepColumns,
    LoadDataFromDicts,
    LoadHubDataset,
    PreferenceToArgilla,
    TextGenerationToArgilla,
)
from distilabel.steps.tasks import TextGeneration, UltraFeedback
from distilabel.steps.tasks.text_generation import TextGeneration
from dotenv import load_dotenv
import pandas as pd

load_dotenv()

def location_extraction(article):
    system_prompt = """
    You are an advanced Named Entity Recognition (NER) system specializing in disease-related information.
    Task: Identify geographical locations from a given list of entities.
    Instruction: 
    - Focus on identifying specific and recognized geographical locations in each paragraph.
    - LOCATION: Extract names of countries, cities, regions, and towns. Do not include vague or non-specific locations.
    - Present your findings for each entity in a clear, line-separated format. If an entity value includes a list or multiple components, separate these so that each item appears on its own line. 
    Example Output Format:
    - LOCATION: Mexico
    - LOCATION: Vietnam
    """
    prompt = f"""
    Article Content:
    ----------------
    {article}

    Analysis Task:
    --------------
    Please analyze the above article for the specified entities. If certain entities, like dates or locations, are not mentioned, indicate this by stating 'Not mentioned'. For example, 'DATE: Not mentioned'.
    """
    return system_prompt + prompt

llm = AzureOpenAILLM(
    model=os.getenv("api_engine_gpt4"),
    base_url=os.getenv("api_base_gpt4"),
    api_key=os.getenv("api_key_gpt4"),
    api_version=os.getenv("api_version"),
)


with Pipeline(name="ultrafeedback-pipeline") as pipeline:
    df=pd.read_csv('/g/data/ue03/duongd/ews-nlp-llm-inference/dataset/ner/collected/latest_ner.csv')
    df['instruction'] = [location_extraction(x) for x in df['summary']]
    df=df[['instruction', 'locations']]
    df=df.rename(columns={'locations':'generations'})
    df=df.loc[:3, :]
    data = df.to_dict(orient='records')
    load_hub_dataset = LoadDataFromDicts(
        name="load_data",
        data=data,
        batch_size=1,
    )
    ultrafeedback = UltraFeedback(
        name="ultrafeedback_overall_rating",
        llm=llm,
        aspect="overall-rating",
        output_mappings={"model_name": "ultrafeedback_model"},
    )
    load_hub_dataset.connect(ultrafeedback)

if __name__ == "__main__":
    dataset = pipeline.run(
        parameters={
            "ultrafeedback_overall_rating": {
                "generation_kwargs": {
                    "max_new_tokens": 1024,
                    "temperature": 0.7,
                },
            },
        }
    )

The errors still occurred:

Screenshot 2024-04-21 at 5 15 09 pm

tridungduong-unsw avatar Apr 21 '24 07:04 tridungduong-unsw

Hi @tridungduong-unsw, thanks for the details! I'll try to reproduce the error and get back to you. You are using conda, right?

gabrielmbmb avatar Apr 21 '24 10:04 gabrielmbmb

Hi @gabrielmbmb, yes, I'm using conda env. btw, I make it run now but need to modify a little bit. Other people will the same problem can try:

import json
import os
import pdb

import openai
from distilabel.llms import AzureOpenAILLM, OpenAILLM, vLLM
from distilabel.llms.mistral import MistralLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import (
    CombineColumns,
    KeepColumns,
    LoadDataFromDicts,
    LoadHubDataset,
    PreferenceToArgilla,
    TextGenerationToArgilla,
)
from distilabel.steps.tasks import TextGeneration, UltraFeedback
from distilabel.steps.tasks.text_generation import TextGeneration
from dotenv import load_dotenv
import pandas as pd

load_dotenv()

def location_extraction(article):
    return system_prompt + prompt

llm = AzureOpenAILLM(
    model=os.getenv("api_engine_gpt4"),
    base_url=os.getenv("api_base_gpt4"),
    api_key=os.getenv("api_key_gpt4"),
    api_version=os.getenv("api_version"),
)


with Pipeline(name="ultrafeedback-pipeline") as pipeline:
    df=pd.read_csv('data.csv')
    df['instruction'] = [location_extraction(x) for x in df['summary']]
    df=df[['instruction', 'locations']]
    df=df.rename(columns={'locations':'generations'})
    df=df.loc[:3, :]
    data = df.to_dict(orient='records')
    load_hub_dataset = LoadDataFromDicts(
        name="load_data",
        data=data,
        batch_size=1,
    )
    ultrafeedback = UltraFeedback(
        name="ultrafeedback_overall_rating",
        llm=llm,
        aspect="overall-rating",
        output_mappings={"model_name": "ultrafeedback_model"},
    )
    load_hub_dataset.connect(ultrafeedback)

if __name__ == "__main__":
    dataset = pipeline.run(
        parameters={
            "ultrafeedback_overall_rating": {
                "generation_kwargs": {
                    "max_new_tokens": 1024,
                    "temperature": 0.7,
                },
            },
        }
    )

tridungduong-unsw avatar Apr 21 '24 23:04 tridungduong-unsw

Hi @YueWu0301, could you share the code of your pipeline?

sure,here is my code:

with Pipeline("pipe-name", description="My first pipe") as pipeline:
    load_dataset = LoadHubDataset(
        repo_id="xxxx",
        name="load_dataset2"
        # output_mappings={"input": "instruction"},
    )
    push_to_hub = PushToHub(
    name="push_to_hub1",
    repo_id="xxxx",
    token="xxxxxx"
    )
    llm1 = OpenAILLM(model="xxxx",
                     api_key = "xxxx",
                     base_url="xxxx")
    task = TextGeneration(name=f"text_generation1", llm=llm1)
    load_dataset.connect(task)
    task.connect(push_to_hub)


re = pipeline.run(
        parameters={
        "load_dataset2":{
            "repo_id":"xxxxxx",
        },
        
        "text_generation1": {
            "llm": {
                "generation_kwargs": {
                    "temperature": 0.9,
                    }
                }
            },
        
        "push_to_hub1":{
                "repo_id":"xxxxxxx", 
        }
        }
)

Thanks a lot

YueWu0301 avatar Apr 22 '24 08:04 YueWu0301

Hi @YueWu0301, could you try running and see if it works for you too? (mind the if __name__ == "__main__":)

with Pipeline("pipe-name", description="My first pipe") as pipeline:
    load_dataset = LoadHubDataset(
        repo_id="xxxx",
        name="load_dataset2"
        # output_mappings={"input": "instruction"},
    )
    push_to_hub = PushToHub(
    name="push_to_hub1",
    repo_id="xxxx",
    token="xxxxxx"
    )
    llm1 = OpenAILLM(model="xxxx",
                     api_key = "xxxx",
                     base_url="xxxx")
    task = TextGeneration(name=f"text_generation1", llm=llm1)
    load_dataset.connect(task)
    task.connect(push_to_hub)

if __name__ == "__main__":
    re = pipeline.run(
            parameters={
            "load_dataset2":{
                "repo_id":"xxxxxx",
            },
            
            "text_generation1": {
                "llm": {
                    "generation_kwargs": {
                        "temperature": 0.9,
                        }
                    }
                },
            
            "push_to_hub1":{
                    "repo_id":"xxxxxxx", 
            }
            }
    )

gabrielmbmb avatar Apr 22 '24 10:04 gabrielmbmb

I don't know whether it is proper to ask some advice here, I also run with the thread error with the 1.3.1 version.

RuntimeError: Failed to load all the steps. Could not run pipeline.
Exception in thread Thread-1 (_monitor):
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner

following is my code to reproduce the error

from distilabel.llms.vllm import ClientvLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromHub, CombineColumns
from distilabel.steps.tasks import TextGeneration, UltraFeedback

Qwen7B = ClientvLLM(
    base_url="http://localhost:8001/v1",
    model="/home/public_data/qwen/Qwen2-7B-Instruct/"
)
Qwen72B = ClientvLLM(
    base_url="http://localhost:8008/v1",
    model="/home/public_data/qwen/Qwen2-72B-Instruct/"
)
with Pipeline(name="synthetic-data-with-qwen") as pipeline:
    load_dataset = LoadDataFromHub(
        repo_id="argilla/10Kprompts-mini"
    )
    generate = [
        TextGeneration(llm=Qwen7B),
        TextGeneration(llm=Qwen72B)
    ]
    combine = CombineColumns(
        columns=["generation", "model_name"],
        output_columns=["generations", "model_names"]
    )
    rate = UltraFeedback(aspect="overall-rating", llm=Qwen72B)
    load_dataset >> generate >> combine >> rate

if __name__ == "__main__":
    distiset = pipeline.run()

the full log is like following:

Downloading readme: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 347/347 [00:00<00:00, 1.54kB/s]
[08/17/24 08:41:48] INFO     ['distilabel.pipeline'] 📝 Pipeline data will be written to '/root/.cache/distilabel/pipelines/synthetic-data-with-qwen/afa142b13d9d3dc171d7a6159a1c21c3ecd41911/data'                                                                                 base.py:696
                    INFO     ['distilabel.pipeline'] ⌛ The steps of the pipeline will be loaded in stages:                                                                                                                                                                           base.py:705
                              * Stage 0: ['load_data_from_hub_0', 'text_generation_0', 'text_generation_1', 'combine_columns_0', 'ultra_feedback_0']
                    INFO     ['distilabel.pipeline'] ⏳ Waiting for all the steps of stage 0 to load...                                                                                                                                                                               base.py:918
[08/17/24 08:41:50] ERROR    ['distilabel.pipeline'] ❌ Failed with an unhandled exception: Error sending result: '<multiprocessing.pool.ExceptionWithTraceback object at 0x7f67784bed70>'. Reason: 'TypeError("cannot pickle '_thread.RLock' object")'                              local.py:263
                    INFO     ['distilabel.pipeline'] 🛑 Stopping pipeline. Waiting for steps to finish processing batches...                                                                                                                                                         local.py:363
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /home/qiey/DataGeneration/test_preference.py:37 in <module>                                      │
│                                                                                                  │
│   34 │   load_dataset >> generate >> combine >> rate                                             │
│   35                                                                                             │
│   36 if __name__ == "__main__":                                                                  │
│ ❱ 37 │   distiset = pipeline.run()                                                               │
│   38                                                                                             │
│                                                                                                  │
│ ╭────────────────────────────────────── locals ───────────────────────────────────────╮          │
│ │      ClientvLLM = <class 'distilabel.llms.vllm.ClientvLLM'>                         │          │
│ │         combine = CombineColumns(                                                   │          │
│ │                   │   name='combine_columns_0',                                     │          │
│ │                   │   resources=StepResources(                                      │          │
│ │                   │   │   replicas=1,                                               │          │
│ │                   │   │   cpus=None,                                                │          │
│ │                   │   │   gpus=None,                                                │          │
│ │                   │   │   memory=None,                                              │          │
│ │                   │   │   resources=None                                            │          │
│ │                   │   ),                                                            │          │
│ │                   │   input_mappings={},                                            │          │
│ │                   │   output_mappings={},                                           │          │
│ │                   │   input_batch_size=50,                                          │          │
│ │                   │   columns=['generation', 'model_name'],                         │          │
│ │                   │   output_columns=['generations', 'model_names']                 │          │
│ │                   )                                                                 │          │
│ │  CombineColumns = <class 'distilabel.steps.columns.group.CombineColumns'>           │          │
│ │        generate = [                                                                 │          │
│ │                   │   TextGeneration(                                               │          │
│ │                   │   │   name='text_generation_0',                                 │          │
│ │                   │   │   resources=StepResources(                                  │          │
│ │                   │   │   │   replicas=1,                                           │          │
│ │                   │   │   │   cpus=None,                                            │          │
│ │                   │   │   │   gpus=None,                                            │          │
│ │                   │   │   │   memory=None,                                          │          │
│ │                   │   │   │   resources=None                                        │          │
│ │                   │   │   ),                                                        │          │
│ │                   │   │   input_mappings={},                                        │          │
│ │                   │   │   output_mappings={},                                       │          │
│ │                   │   │   input_batch_size=50,                                      │          │
│ │                   │   │   llm=ClientvLLM(                                           │          │
│ │                   │   │   │   use_magpie_template=False,                            │          │
│ │                   │   │   │   magpie_pre_query_template=None,                       │          │
│ │                   │   │   │   generation_kwargs={},                                 │          │
│ │                   │   │   │   model='/home/public_data/qwen/Qwen2-7B-Instruct/',    │          │
│ │                   │   │   │   base_url='http://localhost:8001/v1',                  │          │
│ │                   │   │   │   api_key=None,                                         │          │
│ │                   │   │   │   max_retries=6,                                        │          │
│ │                   │   │   │   timeout=120,                                          │          │
│ │                   │   │   │   structured_output=None,                               │          │
│ │                   │   │   │   tokenizer=None,                                       │          │
│ │                   │   │   │   tokenizer_revision=None                               │          │
│ │                   │   │   ),                                                        │          │
│ │                   │   │   group_generations=False,                                  │          │
│ │                   │   │   add_raw_output=True,                                      │          │
│ │                   │   │   num_generations=1,                                        │          │
│ │                   │   │   use_system_prompt=True                                    │          │
│ │                   │   ),                                                            │          │
│ │                   │   TextGeneration(                                               │          │
│ │                   │   │   name='text_generation_1',                                 │          │
│ │                   │   │   resources=StepResources(                                  │          │
│ │                   │   │   │   replicas=1,                                           │          │
│ │                   │   │   │   cpus=None,                                            │          │
│ │                   │   │   │   gpus=None,                                            │          │
│ │                   │   │   │   memory=None,                                          │          │
│ │                   │   │   │   resources=None                                        │          │
│ │                   │   │   ),                                                        │          │
│ │                   │   │   input_mappings={},                                        │          │
│ │                   │   │   output_mappings={},                                       │          │
│ │                   │   │   input_batch_size=50,                                      │          │
│ │                   │   │   llm=ClientvLLM(                                           │          │
│ │                   │   │   │   use_magpie_template=False,                            │          │
│ │                   │   │   │   magpie_pre_query_template=None,                       │          │
│ │                   │   │   │   generation_kwargs={},                                 │          │
│ │                   │   │   │   model='/home/public_data/qwen/Qwen2-72B-Instruct/',   │          │
│ │                   │   │   │   base_url='http://localhost:8008/v1',                  │          │
│ │                   │   │   │   api_key=None,                                         │          │
│ │                   │   │   │   max_retries=6,                                        │          │
│ │                   │   │   │   timeout=120,                                          │          │
│ │                   │   │   │   structured_output=None,                               │          │
│ │                   │   │   │   tokenizer=None,                                       │          │
│ │                   │   │   │   tokenizer_revision=None                               │          │
│ │                   │   │   ),                                                        │          │
│ │                   │   │   group_generations=False,                                  │          │
│ │                   │   │   add_raw_output=True,                                      │          │
│ │                   │   │   num_generations=1,                                        │          │
│ │                   │   │   use_system_prompt=True                                    │          │
│ │                   │   )                                                             │          │
│ │                   ]                                                                 │          │
│ │       Qwen72B = ClientvLLM(                                                       │          │
│ │                   │   use_magpie_template=False,                                    │          │
│ │                   │   magpie_pre_query_template=None,                               │          │
│ │                   │   generation_kwargs={},                                         │          │
│ │                   │   model='/home/public_data/qwen/Qwen2-72B-Instruct/',           │          │
│ │                   │   base_url='http://localhost:8008/v1',                          │          │
│ │                   │   api_key=None,                                                 │          │
│ │                   │   max_retries=6,                                                │          │
│ │                   │   timeout=120,                                                  │          │
│ │                   │   structured_output=None,                                       │          │
│ │                   │   tokenizer=None,                                               │          │
│ │                   │   tokenizer_revision=None                                       │          │
│ │                   )                                                                 │          │
│ │        Qwen7B = ClientvLLM(                                                       │          │
│ │                   │   use_magpie_template=False,                                    │          │
│ │                   │   magpie_pre_query_template=None,                               │          │
│ │                   │   generation_kwargs={},                                         │          │
│ │                   │   model='/home/public_data/qwen/Qwen2-7B-Instruct/',            │          │
│ │                   │   base_url='http://localhost:8001/v1',                          │          │
│ │                   │   api_key=None,                                                 │          │
│ │                   │   max_retries=6,                                                │          │
│ │                   │   timeout=120,                                                  │          │
│ │                   │   structured_output=None,                                       │          │
│ │                   │   tokenizer=None,                                               │          │
│ │                   │   tokenizer_revision=None                                       │          │
│ │                   )                                                                 │          │
│ │    load_dataset = LoadDataFromHub(                                                  │          │
│ │                   │   name='load_data_from_hub_0',                                  │          │
│ │                   │   resources=StepResources(                                      │          │
│ │                   │   │   replicas=1,                                               │          │
│ │                   │   │   cpus=None,                                                │          │
│ │                   │   │   gpus=None,                                                │          │
│ │                   │   │   memory=None,                                              │          │
│ │                   │   │   resources=None                                            │          │
│ │                   │   ),                                                            │          │
│ │                   │   input_mappings={},                                            │          │
│ │                   │   output_mappings={},                                           │          │
│ │                   │   batch_size=50,                                                │          │
│ │                   │   repo_id='argilla/10Kprompts-mini',                            │          │
│ │                   │   split='train',                                                │          │
│ │                   │   config=None,                                                  │          │
│ │                   │   streaming=False,                                              │          │
│ │                   │   num_examples=None,                                            │          │
│ │                   │   storage_options=None                                          │          │
│ │                   )                                                                 │          │
│ │ LoadDataFromHub = <class 'distilabel.steps.generators.huggingface.LoadDataFromHub'> │          │
│ │        Pipeline = <class 'distilabel.pipeline.local.Pipeline'>                      │          │
│ │        pipeline = <distilabel.pipeline.local.Pipeline object at 0x7f679049ffd0>     │          │
│ │            rate = UltraFeedback(                                                    │          │
│ │                   │   name='ultra_feedback_0',                                      │          │
│ │                   │   resources=StepResources(                                      │          │
│ │                   │   │   replicas=1,                                               │          │
│ │                   │   │   cpus=None,                                                │          │
│ │                   │   │   gpus=None,                                                │          │
│ │                   │   │   memory=None,                                              │          │
│ │                   │   │   resources=None                                            │          │
│ │                   │   ),                                                            │          │
│ │                   │   input_mappings={},                                            │          │
│ │                   │   output_mappings={},                                           │          │
│ │                   │   input_batch_size=50,                                          │          │
│ │                   │   llm=ClientvLLM(                                               │          │
│ │                   │   │   use_magpie_template=False,                                │          │
│ │                   │   │   magpie_pre_query_template=None,                           │          │
│ │                   │   │   generation_kwargs={},                                     │          │
│ │                   │   │   model='/home/public_data/qwen/Qwen2-72B-Instruct/',       │          │
│ │                   │   │   base_url='http://localhost:8008/v1',                      │          │
│ │                   │   │   api_key=None,                                             │          │
│ │                   │   │   max_retries=6,                                            │          │
│ │                   │   │   timeout=120,                                              │          │
│ │                   │   │   structured_output=None,                                   │          │
│ │                   │   │   tokenizer=None,                                           │          │
│ │                   │   │   tokenizer_revision=None                                   │          │
│ │                   │   ),                                                            │          │
│ │                   │   group_generations=False,                                      │          │
│ │                   │   add_raw_output=True,                                          │          │
│ │                   │   num_generations=1,                                            │          │
│ │                   │   aspect='overall-rating'                                       │          │
│ │                   )                                                                 │          │
│ │  TextGeneration = <class 'distilabel.steps.tasks.text_generation.TextGeneration'>   │          │
│ │   UltraFeedback = <class 'distilabel.steps.tasks.ultrafeedback.UltraFeedback'>      │          │
│ ╰─────────────────────────────────────────────────────────────────────────────────────╯          │
│                                                                                                  │
│ /usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py:205 in run                  │
│                                                                                                  │
│   202 │   │   │   self._teardown()                                                               │
│   203 │   │   │                                                                                  │
│   204 │   │   │   if self._exception:                                                            │
│ ❱ 205 │   │   │   │   raise self._exception                                                      │
│   206 │   │                                                                                      │
│   207 │   │   distiset = create_distiset(                                                        │
│   208 │   │   │   self._cache_location["data"],                                                  │
│                                                                                                  │
│ ╭────────────────────────────────────────── locals ───────────────────────────────────────────╮  │
│ │             dataset = None                                                                  │  │
│ │            distiset = None                                                                  │  │
│ │             manager = <multiprocessing.managers.SyncManager object at 0x7f66381da500>       │  │
│ │       num_processes = 5                                                                     │  │
│ │          parameters = None                                                                  │  │
│ │                pool = <distilabel.pipeline.local._NoDaemonPool state=TERMINATE pool_size=5> │  │
│ │                self = <distilabel.pipeline.local.Pipeline object at 0x7f679049ffd0>         │  │
│ │  storage_parameters = None                                                                  │  │
│ │           use_cache = True                                                                  │  │
│ │ use_fs_to_pass_data = False                                                                 │  │
│ ╰─────────────────────────────────────────────────────────────────────────────────────────────╯  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Failed to load all the steps. Could not run pipeline.
Exception in thread Thread-1 (_monitor):
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner

@gabrielmbmb could you help me with this error?

yuqie avatar Aug 17 '24 09:08 yuqie