amca
amca copied to clipboard
An RL-trained Backgammon agent
Amca
Status: Under construction.
Amca is an RL-based Backgammon
_ agent.
Dependencies
+---------------------+-------------------+
| Dependency | Version Tested On |
+=====================+===================+
| Ubuntu
_ | 16.04 |
+---------------------+-------------------+
| Python
_ | 3.6.8 |
+---------------------+-------------------+
| numpy
_ | 1.15.4 |
+---------------------+-------------------+
| gym
_ | 0.10.9 |
+---------------------+-------------------+
| Stable Baselines
_ | 2.4.0a |
+---------------------+-------------------+
About
This project aims to design Backgammon
_ as a reinforcement learning problem,
and gauge the performance of common deep reinforcement learning algorithms. This
is done by training and gauging the performance of three popular and powerful RL
algorithms:
-
Deep Q Network (Mnih et. al)
_ -
Proximal Policy Optimization (Schulman et. al)
_ -
Soft Actor-Critic (Haarnoja et. al)
_ -
Sarsa (Rummery and Niranjan)
_
The testing is done with the default parameters and implementations provided by
the Stable Baselines
_ library for all the 3 deep RL algorithms. A custom implementation
heavily modified from this repo
_ is used for SARSA, and the hyperparameters
are given in the SarsaAgent
_ object.
Usage
-
play.py: to launch a game against a deep RL trained model. For example,
python play.py ppo amca/models/amca.pkl
will launch the model calledamca.pkl
that was trained using the PPO algorithm. -
train.py: to train an deep RL model (with default hyperparameters) to play. For example,
python train.py -n terminator.pkl -a sac -t 1000000
will train an agent calledterminator.pkl
using the SAC algorithm for 1000000 steps. -
sarsa_play.py: to launch a game against a SARSA trained model.
python sarsa_play.py r2d2.pkl
will launch the model calledr2d2.pkl
that was trained using the SARSA algorithm. -
sarsa_train.py: to train a model using SARSA. For example,
python sarsa_train.py jarvis.pkl -g 10000
will train an agent calledjarvis.pkl
using the SARSA algorithm for 10000 games.
License
GNU General Public License v3.0
_
.. _Ubuntu: https://www.ubuntu.com/ .. _Python: https://www.python.org/ .. _numpy: https://www.numpy.org/ .. _gym: https://gym.openai.com/ .. _Stable Baselines: https://stable-baselines.readthedocs.io/ .. _Backgammon: https://en.wikipedia.org/wiki/Backgammon/ .. _Deep Q Network (Mnih et. al): https://arxiv.org/abs/1312.5602/ .. _Proximal Policy Optimization (Schulman et. al): https://arxiv.org/abs/1707.06347/ .. _Soft Actor-Critic (Haarnoja et. al): https://arxiv.org/abs/1812.05905/ .. _Sarsa (Rummery and Niranjan): ftp://mi.eng.cam.ac.uk/pub/reports/auto-pdf/rummery_tr166.pdf .. _GNU General Public License v3.0: /LICENSE .. _this repo: https://github.com/vmayoral/basic_reinforcement_learning/tree/master/tutorial2 .. _SarsaAgent: amca/agents/sarsa.py