ValueError: Torch var stride_width.1 not found in context
When converting a traced torchvision model, an expected input to a mul operation is not found: ValueError: Torch var stride_width.1 not found in context
Stack Trace
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_16536/1090456604.py in <module>
5 traced_model = torch.jit.trace(model_to_trace, example_image).eval()
6
----> 7 detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=(1, 3, 224, 224))])
8 detector_mlmodel.save("segmenter.mlmodel")
/opt/conda/lib/python3.7/site-packages/coremltools/converters/_converters_entry.py in convert(model, source, inputs, outputs, classifier_config, minimum_deployment_target, convert_to, compute_precision, skip_model_load, compute_units, package_dir, debug)
454 package_dir=package_dir,
455 debug=debug,
--> 456 specification_version=specification_version,
457 )
458
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in mil_convert(model, convert_from, convert_to, compute_units, **kwargs)
185 See `coremltools.converters.convert`
186 """
--> 187 return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
188
189
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in _mil_convert(model, convert_from, convert_to, registry, modelClass, compute_units, **kwargs)
214 convert_to,
215 registry,
--> 216 **kwargs
217 )
218
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in mil_convert_to_proto(model, convert_from, convert_to, converter_registry, **kwargs)
279 frontend_converter = frontend_converter_type()
280
--> 281 prog = frontend_converter(model, **kwargs)
282
283 if convert_to.lower() != "neuralnetwork":
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/converter.py in __call__(self, *args, **kwargs)
107 from .frontend.torch import load
108
--> 109 return load(*args, **kwargs)
110
111
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/load.py in load(model_spec, inputs, specification_version, debug, outputs, cut_at_symbols, **kwargs)
55 inputs = _convert_to_torch_inputtype(inputs)
56 converter = TorchConverter(torchscript, inputs, outputs, cut_at_symbols, specification_version)
---> 57 return _perform_torch_convert(converter, debug)
58
59
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/load.py in _perform_torch_convert(converter, debug)
94 def _perform_torch_convert(converter, debug):
95 try:
---> 96 prog = converter.convert()
97 except RuntimeError as e:
98 if debug and "convert function" in str(e):
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/converter.py in convert(self)
279
280 # Add the rest of the operations
--> 281 convert_nodes(self.context, self.graph)
282
283 graph_outputs = [self.context[name] for name in self.graph.outputs]
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/ops.py in convert_nodes(context, graph)
87
88 context.prepare_for_conversion(node)
---> 89 add_op(context, node)
90
91 # We've generated all the outputs the graph needs, terminate conversion.
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/ops.py in mul(context, node)
1388 @register_torch_op
1389 def mul(context, node):
-> 1390 inputs = _get_inputs(context, node, expected=2)
1391 x, y = promote_input_dtypes(inputs)
1392 res = mb.mul(x=x, y=y, name=node.name)
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/ops.py in _get_inputs(context, node, expected, min_expected)
187 value of @expected.
188 """
--> 189 inputs = [context[name] for name in node.inputs]
190 if expected is not None:
191 expected = [expected] if not isinstance(expected, (list, tuple)) else expected
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/ops.py in <listcomp>(.0)
187 value of @expected.
188 """
--> 189 inputs = [context[name] for name in node.inputs]
190 if expected is not None:
191 expected = [expected] if not isinstance(expected, (list, tuple)) else expected
/opt/conda/lib/python3.7/site-packages/coremltools/converters/mil/frontend/torch/converter.py in __getitem__(self, torch_name)
87 return self._current_graph[idx][torch_name]
88 raise ValueError(
---> 89 "Torch var {} not found in context {}".format(torch_name, self.name)
90 )
91
ValueError: Torch var stride_width.1 not found in context
Steps To Reproduce
import coremltools as ct
import torch, torchvision
detector_model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights="DEFAULT")
detector_model = detector_model.eval()
class FasterRCNN_MobileNetV3_AdapterModel(torch.nn.Module):
"""This adapter is only here to unbox the first output."""
def __init__(self, model, w=2):
super().__init__()
self.model = model
def forward(self, x):
result = self.model(x)
return result[0]['boxes'], result[0]['labels'], result[0]['scores']
adapted_detector_model = FasterRCNN_MobileNetV3_AdapterModel(detector_model)
model_to_trace = adapted_detector_model
with torch.inference_mode():
example_image = torch.rand(1,3,224,224)
out = model_to_trace(example_image)
traced_model = torch.jit.trace(model_to_trace, example_image).eval()
detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=(1, 3, 224, 224))])
detector_mlmodel.save("segmenter.mlmodel")
- If the model conversion succeeds, but there is a numerical mismatch in predictions, please include the code used for comparisons.
System environment:
coremltoolsversion: 6.2- OS: Linux (
Linux foohostname 4.19.0-23-cloud-amd64 #1 SMP Debian 4.19.269-1 (2022-12-20) x86_64 GNU/Linux) - Any other relevant version information (e.g. PyTorch or TensorFlow version):
- Python: 3.7
- PyTorch: 1.12.1+cu102
- Other libraries installed as dependencies of
coremltools:
Requirement already satisfied: coremltools==6.2 in /opt/conda/lib/python3.7/site-packages (6.2)
Requirement already satisfied: tqdm in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (4.64.1)
Requirement already satisfied: protobuf<=4.0.0,>=3.1.0 in /home/jupyter/.local/lib/python3.7/site-packages (from coremltools==6.2) (3.20.1)
Requirement already satisfied: packaging in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (21.3)
Requirement already satisfied: numpy>=1.14.5 in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (1.21.6)
Requirement already satisfied: sympy in /opt/conda/lib/python3.7/site-packages (from coremltools==6.2) (1.10.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging->coremltools==6.2) (3.0.9)
Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.7/site-packages (from sympy->coremltools==6.2) (1.2.1)
Please advise. Thank you!
The out variable from your code contains three tensors all of which are empty. The PyTorch documentation for that model uses a different input shape.
Are you sure your PyTorch model is valid for the input shape you are using?
Thank you @TobyRoseman for reaching out.
Are you sure your PyTorch model is valid for the input shape you are using?
I'm using correct valid input shape. Here is output shape: [{'boxes': tensor([], size=(0, 4), grad_fn=<StackBackward0>), 'labels': tensor([], dtype=torch.int64), 'scores': tensor([], grad_fn=<IndexBackward0>)}]
Thats what I'm using it result[0]['boxes'], result[0]['labels'], result[0]['scores'].
Right, as I said, all of the output tensors are empty. Also the fact that the first tensor is of shape (0, 4) seems wrong.
Do you have a example_image value were the model's outputs are non-empty tensors?
Sure, I've included example image here. Thank you @TobyRoseman.
import coremltools as ct
import torch, torchvision
detector_model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
detector_model = detector_model.eval()
import requests
from PIL import Image
import numpy as np
import transforms as T
toTensor = T.PILToTensor()
toFloatTensor = T.ConvertImageDtype(torch.float)
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
example_image_np = np.array(example_image)
example_image_pt = toFloatTensor(toTensor(example_image)[0])[0]
example_image_pt = example_image_pt.unsqueeze(0)
y = detector_model(example_image_pt)
print(y)
class FasterRCNN_MobileNetV3_AdapterModel(torch.nn.Module):
"""This adapter is only here to unbox the first output."""
def __init__(self, model, w=2):
super().__init__()
self.model = model
def forward(self, x):
result = self.model(x)
return result[0]['boxes'], result[0]['labels'], result[0]['scores']
adapted_detector_model = FasterRCNN_MobileNetV3_AdapterModel(detector_model)
model_to_trace = adapted_detector_model
with torch.inference_mode():
#-example_image = torch.rand(1,3,224,224)
out = model_to_trace(example_image_pt)
traced_model = torch.jit.trace(model_to_trace, example_image_pt).eval()
detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=(1, 3, 224, 224))])
detector_mlmodel.save("segmenter.mlmodel")
----> 1 import transforms as T
ModuleNotFoundError: No module named 'transforms'
Where is this package coming from? I'm certainly familiar with the transformers package but not the transforms package.
This same model is also causing a different error in #1790
----> 1 import transforms as T
ModuleNotFoundError: No module named 'transforms'
Sorry I forgot to add. You need to install pip install transformers https://pypi.org/project/transformers/
I have the transformers package installed. Your code is importing transforms not transformers.
There is no PILToTensor or ConvertImageDtype under the transformers package.
transforms looks like a pretty obscure (i.e. untrusted) package. I'm not going to install it.
@TobyRoseman , Okay I refined code to remove transforms. No additional library is needed:
import coremltools as ct
import torch, torchvision
from torchvision.transforms import functional as F, InterpolationMode, transforms as T
import requests
from PIL import Image
import numpy as np
from typing import Dict, Tuple, Optional
# Image conversion tools:
class PILToTensor(torch.nn.Module):
def forward(
self, image: torch.Tensor, target: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[Dict[str, torch.Tensor]]]:
image = F.pil_to_tensor(image)
return image, target
class ConvertImageDtype(torch.nn.Module):
def __init__(self, dtype: torch.dtype) -> None:
super().__init__()
self.dtype = dtype
def forward(
self, image: torch.Tensor, target: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[Dict[str, torch.Tensor]]]:
image = F.convert_image_dtype(image, self.dtype)
return image, target
# Load the torchvision model
detector_model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
detector_model = detector_model.eval()
# Get a sample image
toTensor = T.PILToTensor()
toFloatTensor = T.ConvertImageDtype(torch.float)
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
example_image_np = np.array(example_image)
example_image_pt = toFloatTensor(toTensor(example_image))
example_image_pt = example_image_pt.unsqueeze(0)
# Run the sample through the model to demonstrate the model works
y = detector_model(example_image_pt)
# Make an adaptor to convert the model outputs to a tuple
class FasterRCNN_MobileNetV3_AdapterModel(torch.nn.Module):
"""This adapter is only here to unbox the first output."""
def __init__(self, model, w=2):
super().__init__()
self.model = model
def forward(self, x):
result = self.model(x)
return result[0]['boxes'], result[0]['labels'], result[0]['scores']
adapted_detector_model = FasterRCNN_MobileNetV3_AdapterModel(detector_model)
# Trace and convert the model using coremltools
model_to_trace = adapted_detector_model
with torch.inference_mode():
out = model_to_trace(example_image_pt)
traced_model = torch.jit.trace(model_to_trace, example_image_pt).eval()
detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=example_image_pt.shape)])
detector_mlmodel.save("segmenter.mlmodel")
I met similar issues when converting FasterRCNN before.
This stride_width.1 issue is related to that the generate_tensor_assignment_ops IR Pass doesn’t work for some special fill_ ops in torch. From my experience, downgrading PyTorch to torch 1.11.0 with torchvision 0.12.0 make this issue gone.
@ivyas21 Could you try to use torch 1.11.0 with torchvision 0.12.0 to see if it works?
@junpeiz , Thank you. Let me try it. Hope it works as you suggest!!
@junpeiz , I just downgraded torch and vision as you suggested. I'm getting this error now:
RuntimeError: PyTorch convert function for op 'torchvision::roi_align' not implemented.
@ivyas21 Good, now we can confirm that stride_width.1 issue is introduced by newer version of PyTorch. It's helpful for us to fix it in the future.
For the torchvision::roi_align not implemented issue, it's expected, as coremltools currently doesn't support that op. Feel free to write your own composite op by following https://coremltools.readme.io/docs/composite-operators, and also it seems that other users have proposed a solution to add that PR in https://github.com/apple/coremltools/pull/1509.
Let's keep this thread focus on the stride_width.1 issue. For torchvision::roi_align feel free to open another issue as a feature request.
@junpeiz, Sounds good. Thank you for clarifying it. I'll open new issue for torchvision::roi_align. Many of latest library like Clip requires to upgrade torch & torchvision latest version. Hopefully stride_width.1 will be fixed soon.
@junpeiz This issue seems to be solved.
I tried with main (e0f8918baf95a55d29dcd40649c50f091ffd4114) and torch==1.13.1, I got
File "/Users/ryosukefukatani/work/coremltools/faster.py", line 28, in <module>
detector_mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(shape=(1, 3, 224, 224))])
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/_converters_entry.py", line 542, in convert
main_pipeline=pass_pipeline,
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/converter.py", line 188, in mil_convert
return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/converter.py", line 217, in _mil_convert
**kwargs
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/converter.py", line 286, in mil_convert_to_proto
prog = frontend_converter(model, **kwargs)
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/converter.py", line 108, in __call__
return load(*args, **kwargs)
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/frontend/torch/load.py", line 63, in load
return _perform_torch_convert(converter, debug)
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/frontend/torch/load.py", line 110, in _perform_torch_convert
raise e
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/frontend/torch/load.py", line 102, in _perform_torch_convert
prog = converter.convert()
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/frontend/torch/converter.py", line 439, in convert
convert_nodes(self.context, self.graph)
File "/Users/ryosukefukatani/work/coremltools/coremltools/converters/mil/frontend/torch/ops.py", line 89, in convert_nodes
f"PyTorch convert function for op '{node.kind}' not implemented."
RuntimeError: PyTorch convert function for op 'torchvision::roi_align' not implemented.