apertium-python
apertium-python copied to clipboard
now you can even use apertium from python
Apertium + Python
Introduction
- The codebase is in development for the GSoC '19 project called Apertium API in Python
- The Apertium core modules are written in C++.
- This project makes the Apertium modules available in Python, which because of its simplicity is more appealing to users.
About the Exisiting Code Base
- The existing codebase has
Subprocessand SWIG wrapper implementations of the higher level functions of Apertium and CG modules.
Installation
-
Installation on Debian/Ubuntu and Windows is natively supported:
pip install apertium -
For developers,
pipenvcan be used to install the development dependencies and enter a shell with them:pip install pipenv pipenv install --dev pipenv shell -
Apertium packages can be installed from Python interpreter as well.
- Install
apertium-all-devby callingapertium.installer.install_apertium() - Install language packages with
apertium.installer.install_module(language_name). For exampleapertium-engcan be installed by executingapertium.installer.install_module('eng')
- Install
Usage
- For multiple invocations
Method 1is more performant, as the dictionary needs to be loaded only once.
Analysis
Performing Morphological Analysis
Method 1: Create an Analyzer object and call its analyze method.
In [1]: import apertium
In [2]: a = apertium.Analyzer('en')
In [3]: a.analyze('cats')
Out[3]: [cats/cat<n><pl>, ./.<sent>]
Method 2: Calling analyze() directly.
In [1]: import apertium
In [2]: apertium.analyze('en', 'cats')
Out[2]: cats/cat<n><pl>
Generation
Performing Morphological Generation
Method 1: Create a Generator object and call its generate method.
In [1]: import apertium
In [2]: g = apertium.Generator('en')
In [3]: g.generate('^cat<n><pl>$')
Out[3]: 'cats'
Method 2: Calling generate() directly.
In [1]: import apertium
In [2]: apertium.generate('en', '^cat<n><pl>$')
Out[2]: 'cats'
Tagger
Method 1: Create a Tagger object and call its tag method.
In [1]: import apertium
In [2]: tagger = apertium.Tagger('eng')
In [3]: tagger.tag('cats')
Out[3]: [cats/cat<n><pl>]
Method 2: Calling tag() directly.
In [1]: import apertium
In [2]: apertium.tag('en', 'cats')
Out[2]: [cats/cat<n><pl>]
Translation
Method 1: Create a Translator object and call its translate method.
In [1]: import apertium
In [2]: t = apertium.Translator('eng', 'spa')
In [3]: t.translate('cats')
Out[3]: 'Gatos'
Method 2: Calling translate() directly.
In [1]: import apertium
In [2]: apertium.translate('en', 'spa', 'cats')
Out[2]: 'Gatos'
Installing more modes from other language data
One can also install modes by providing the path to the lang-data:
In [1]: import apertium
In [2]: apertium.append_pair_path('..')