tvm
tvm copied to clipboard
[Bug] Missing PackedFunc with Specific Transformation Sequence in Relax Module
I encountered an issue while running a Relax module with a specific transformation sequence. Specifically, when FuseTIR()
is applied once, the VM fails to find the PackedFunc fused_relax_nn_attention_cutlass_gv
. However, when the FuseTIR()
optimization is applied again before AllocateWorkspace()
, the problem disappears.
Expected behavior
The script is expected to run successfully without errors.
Actual behavior
InternalError: Check failed: (func.defined()) is false: Error: Cannot find PackedFunc fused_relax_nn_attention_cutlass_gv in either Relax VM kernel library, or in TVM runtime PackedFunc registry, or in global Relax functions of the VM executable
Steps to reproduce
The following script reproduces the issue:
import tvm
from tvm import relax
from tvm.script import ir as I
from tvm.script import tir as T
from tvm.script import relax as R
@I.ir_module
class Module:
@T.prim_func(private=True)
def attention(q_1: T.Buffer((T.int64(32), T.int64(8), T.int64(16), T.int64(8)), "float16"), k_1: T.Buffer((T.int64(32), T.int64(8), T.int64(16), T.int64(8)), "float16"), v_1: T.Buffer((T.int64(32), T.int64(8), T.int64(16), T.int64(8)), "float16"), T_transpose: T.Buffer((T.int64(32), T.int64(8), T.int64(16), T.int64(8)), "float16")):
T.func_attr({"tir.noalias": T.bool(True)})
# with T.block("root"):
T_transpose_1 = T.alloc_buffer((T.int64(32), T.int64(16), T.int64(8), T.int64(8)), "float16")
T_reshape = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_transpose_2 = T.alloc_buffer((T.int64(32), T.int64(16), T.int64(8), T.int64(8)), "float16")
T_reshape_1 = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_batch_matmul_NT = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_divide = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_softmax_maxelem = T.alloc_buffer((T.int64(512), T.int64(8)), "float16")
T_softmax_exp = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_softmax_expsum = T.alloc_buffer((T.int64(512), T.int64(8)), "float16")
T_softmax_norm = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_transpose_3 = T.alloc_buffer((T.int64(32), T.int64(16), T.int64(8), T.int64(8)), "float16")
T_reshape_2 = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_batch_matmul_NN = T.alloc_buffer((T.int64(512), T.int64(8), T.int64(8)), "float16")
T_reshape_3 = T.alloc_buffer((T.int64(32), T.int64(16), T.int64(8), T.int64(8)), "float16")
for ax0, ax1, ax2, ax3 in T.grid(T.int64(32), T.int64(16), T.int64(8), T.int64(8)):
with T.block("T_transpose"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(q_1[v_ax0, v_ax2, v_ax1, v_ax3])
T.writes(T_transpose_1[v_ax0, v_ax1, v_ax2, v_ax3])
T_transpose_1[v_ax0, v_ax1, v_ax2, v_ax3] = q_1[v_ax0, v_ax2, v_ax1, v_ax3]
for ax0, ax1, ax2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_reshape"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(T_transpose_1[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)])
T.writes(T_reshape[v_ax0, v_ax1, v_ax2])
T_reshape[v_ax0, v_ax1, v_ax2] = T_transpose_1[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)]
for ax0, ax1, ax2, ax3 in T.grid(T.int64(32), T.int64(16), T.int64(8), T.int64(8)):
with T.block("T_transpose_1"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(k_1[v_ax0, v_ax2, v_ax1, v_ax3])
T.writes(T_transpose_2[v_ax0, v_ax1, v_ax2, v_ax3])
T_transpose_2[v_ax0, v_ax1, v_ax2, v_ax3] = k_1[v_ax0, v_ax2, v_ax1, v_ax3]
for ax0, ax1, ax2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_reshape_1"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(T_transpose_2[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)])
T.writes(T_reshape_1[v_ax0, v_ax1, v_ax2])
T_reshape_1[v_ax0, v_ax1, v_ax2] = T_transpose_2[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)]
for b, i, j, k in T.grid(T.int64(512), T.int64(8), T.int64(8), T.int64(8)):
with T.block("T_batch_matmul_NT"):
v_b, v_i, v_j, v_k = T.axis.remap("SSSR", [b, i, j, k])
T.reads(T_reshape[v_b, v_i, v_k], T_reshape_1[v_b, v_j, v_k])
T.writes(T_batch_matmul_NT[v_b, v_i, v_j])
T.block_attr({"layout_free_placeholders": [T_reshape_1]})
with T.init():
T_batch_matmul_NT[v_b, v_i, v_j] = T.float16(0)
T_batch_matmul_NT[v_b, v_i, v_j] = T_batch_matmul_NT[v_b, v_i, v_j] + T_reshape[v_b, v_i, v_k] * T_reshape_1[v_b, v_j, v_k]
for ax0, ax1, ax2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_divide"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(T_batch_matmul_NT[v_ax0, v_ax1, v_ax2])
T.writes(T_divide[v_ax0, v_ax1, v_ax2])
T_divide[v_ax0, v_ax1, v_ax2] = T_batch_matmul_NT[v_ax0, v_ax1, v_ax2] / T.sqrt(T.float16(8))
for i0, i1, k in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_softmax_maxelem"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(T_divide[v_i0, v_i1, v_k])
T.writes(T_softmax_maxelem[v_i0, v_i1])
with T.init():
T_softmax_maxelem[v_i0, v_i1] = T.float16(-65504)
T_softmax_maxelem[v_i0, v_i1] = T.max(T_softmax_maxelem[v_i0, v_i1], T_divide[v_i0, v_i1, v_k])
for i0, i1, i2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_softmax_exp"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(T_divide[v_i0, v_i1, v_i2], T_softmax_maxelem[v_i0, v_i1])
T.writes(T_softmax_exp[v_i0, v_i1, v_i2])
T_softmax_exp[v_i0, v_i1, v_i2] = T.exp(T_divide[v_i0, v_i1, v_i2] - T_softmax_maxelem[v_i0, v_i1])
for i0, i1, k in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_softmax_expsum"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(T_softmax_exp[v_i0, v_i1, v_k])
T.writes(T_softmax_expsum[v_i0, v_i1])
with T.init():
T_softmax_expsum[v_i0, v_i1] = T.float16(0)
T_softmax_expsum[v_i0, v_i1] = T_softmax_expsum[v_i0, v_i1] + T_softmax_exp[v_i0, v_i1, v_k]
for i0, i1, i2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_softmax_norm"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2], T_softmax_expsum[v_i0, v_i1])
T.writes(T_softmax_norm[v_i0, v_i1, v_i2])
T.block_attr({"axis": 2})
T_softmax_norm[v_i0, v_i1, v_i2] = T_softmax_exp[v_i0, v_i1, v_i2] / T_softmax_expsum[v_i0, v_i1]
for ax0, ax1, ax2, ax3 in T.grid(T.int64(32), T.int64(16), T.int64(8), T.int64(8)):
with T.block("T_transpose_2"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(v_1[v_ax0, v_ax2, v_ax1, v_ax3])
T.writes(T_transpose_3[v_ax0, v_ax1, v_ax2, v_ax3])
T_transpose_3[v_ax0, v_ax1, v_ax2, v_ax3] = v_1[v_ax0, v_ax2, v_ax1, v_ax3]
for ax0, ax1, ax2 in T.grid(T.int64(512), T.int64(8), T.int64(8)):
with T.block("T_reshape_2"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(T_transpose_3[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)])
T.writes(T_reshape_2[v_ax0, v_ax1, v_ax2])
T_reshape_2[v_ax0, v_ax1, v_ax2] = T_transpose_3[((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(512) // T.int64(16), ((v_ax2 // T.int64(8) + v_ax1) // T.int64(8) + v_ax0) % T.int64(16), (v_ax2 // T.int64(8) + v_ax1) % T.int64(8), v_ax2 % T.int64(8)]
for b, i, j, k in T.grid(T.int64(512), T.int64(8), T.int64(8), T.int64(8)):
with T.block("T_batch_matmul_NN"):
v_b, v_i, v_j, v_k = T.axis.remap("SSSR", [b, i, j, k])
T.reads(T_softmax_norm[v_b, v_i, v_k], T_reshape_2[v_b, v_k, v_j])
T.writes(T_batch_matmul_NN[v_b, v_i, v_j])
T.block_attr({"layout_free_placeholders": [T_reshape_2]})
with T.init():
T_batch_matmul_NN[v_b, v_i, v_j] = T.float16(0)
T_batch_matmul_NN[v_b, v_i, v_j] = T_batch_matmul_NN[v_b, v_i, v_j] + T_softmax_norm[v_b, v_i, v_k] * T_reshape_2[v_b, v_k, v_j]
for ax0, ax1, ax2, ax3 in T.grid(T.int64(32), T.int64(16), T.int64(8), T.int64(8)):
with T.block("T_reshape_3"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(T_batch_matmul_NN[(v_ax0 * T.int64(16) + (v_ax3 // T.int64(8) + v_ax2) // T.int64(8) + v_ax1) % T.int64(512), (v_ax3 // T.int64(8) + v_ax2) % T.int64(8), v_ax3 % T.int64(8)])
T.writes(T_reshape_3[v_ax0, v_ax1, v_ax2, v_ax3])
T_reshape_3[v_ax0, v_ax1, v_ax2, v_ax3] = T_batch_matmul_NN[(v_ax0 * T.int64(16) + (v_ax3 // T.int64(8) + v_ax2) // T.int64(8) + v_ax1) % T.int64(512), (v_ax3 // T.int64(8) + v_ax2) % T.int64(8), v_ax3 % T.int64(8)]
for ax0, ax1, ax2, ax3 in T.grid(T.int64(32), T.int64(8), T.int64(16), T.int64(8)):
with T.block("T_transpose_3"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(T_reshape_3[v_ax0, v_ax2, v_ax1, v_ax3])
T.writes(T_transpose[v_ax0, v_ax1, v_ax2, v_ax3])
T_transpose[v_ax0, v_ax1, v_ax2, v_ax3] = T_reshape_3[v_ax0, v_ax2, v_ax1, v_ax3]
@R.function
def entry_b(q: R.Tensor((32, 8, 16, 8), dtype="float16"), k: R.Tensor((32, 8, 16, 8), dtype="float16"), v: R.Tensor((32, 8, 16, 8), dtype="float16")) -> R.Tensor((32, 8, 16, 8), dtype="float16"):
cls = Module
with R.dataflow():
lv: R.Tensor((32, 8, 16, 8), dtype="float16") = cls.fused_relax_nn_attention_cutlass(q, k, v)
R.output(lv)
return lv
@R.function
def fused_relax_nn_attention_cutlass(q: R.Tensor((32, 8, 16, 8), dtype="float16"), k: R.Tensor((32, 8, 16, 8), dtype="float16"), v: R.Tensor((32, 8, 16, 8), dtype="float16")) -> R.Tensor((32, 8, 16, 8), dtype="float16"):
R.func_attr({"Codegen": "cutlass", "WorkspaceSize": 65536})
cls = Module
@R.function
def gv(q_1: R.Tensor((32, 8, 16, 8), dtype="float16"), k_1: R.Tensor((32, 8, 16, 8), dtype="float16"), v_1: R.Tensor((32, 8, 16, 8), dtype="float16")) -> R.Tensor((32, 8, 16, 8), dtype="float16"):
R.func_attr({"Composite": "cutlass.attention", "Primitive": 1, "WorkspaceSize": 65536})
with R.dataflow():
gv_2 = R.call_tir(cls.attention, (q_1, k_1, v_1), out_sinfo=R.Tensor((32, 8, 16, 8), dtype="float16"))
R.output(gv_2)
return gv_2
gv1: R.Tensor((32, 8, 16, 8), dtype="float16") = gv(q, k, v)
return gv1
mod = Module
# crash
mod = tvm.transform.Sequential([relax.transform.FuseTIR(), relax.transform.LambdaLift(), relax.transform.AllocateWorkspace()])(mod)
# pass
#mod = tvm.transform.Sequential([relax.transform.FuseTIR(), relax.transform.LambdaLift(), relax.transform.FuseTIR(), relax.transform.AllocateWorkspace()])(mod)
with tvm.transform.PassContext(opt_level=4):
ex = relax.build(mod, target='llvm')
vm = relax.VirtualMachine(ex, tvm.cpu())
Any guidance on whether this is a bug or a known order dependency would be greatly appreciated. @Lunderberg