paimon
paimon copied to clipboard
[Bug] Metadata column does not support primary key table
Search before asking
- [X] I searched in the issues and found nothing similar.
Paimon version
Paimon 0.9 snapshot
Compute Engine
Spark 3.3
Minimal reproduce step
Currently paimon already support medata column query in master branch.
But metadata column can only query from append table.
select __paimon_row_index,__paimon_file_path from append_table_xxx limit 1;
But if query metadata column from primary key table
select __paimon_row_index,__paimon_file_path from primary_key_table_xxx limit 1;
It will throw exception below:
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2668)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2604)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2603)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2603)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1178)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1178)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1178)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2856)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2798)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2787)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2238)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2259)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2278)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:506)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:459)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:451)
at org.apache.spark.sql.execution.HiveResult$.hiveResultString(HiveResult.scala:76)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.$anonfun$run$2(SparkSQLDriver.scala:69)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:69)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:384)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine$1(SparkSQLCLIDriver.scala:504)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine$1$adapted(SparkSQLCLIDriver.scala:498)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processLine(SparkSQLCLIDriver.scala:498)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:286)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:984)
at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:191)
at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:214)
at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1072)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1081)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.RuntimeException: There need be FileRecoredIterator when metadata columns are required.
at org.apache.paimon.spark.PaimonRecordReaderIterator.advanceIfNeeded(PaimonRecordReaderIterator.scala:103)
at org.apache.paimon.spark.PaimonRecordReaderIterator.hasNext(PaimonRecordReaderIterator.scala:51)
at org.apache.paimon.spark.PaimonPartitionReader.advanceIfNeeded(PaimonPartitionReader.scala:69)
at org.apache.paimon.spark.PaimonPartitionReader.next(PaimonPartitionReader.scala:50)
at org.apache.spark.sql.execution.datasources.v2.PartitionIterator.hasNext(DataSourceRDD.scala:119)
at org.apache.spark.sql.execution.datasources.v2.MetricsIterator.hasNext(DataSourceRDD.scala:156)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1(DataSourceRDD.scala:63)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.$anonfun$hasNext$1$adapted(DataSourceRDD.scala:63)
at scala.Option.exists(Option.scala:376)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.advanceToNextIter(DataSourceRDD.scala:97)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:364)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:890)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:890)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
What doesn't meet your expectations?
Currently metadata column did not support primary key table, I am trying to support it.
Anything else?
No response
Are you willing to submit a PR?
- [X] I'm willing to submit a PR!