pysamoo
pysamoo copied to clipboard
pysamoo - Surrogate-Assisted Multi-objective Optimization
|python| |license|
.. |python| image:: https://img.shields.io/badge/python-3.6-blue.svg :alt: python 3.6
.. |license| image:: https://img.shields.io/badge/license-apache-orange.svg :alt: license apache :target: https://www.apache.org/licenses/LICENSE-2.0
The software documentation is available here: https://anyoptimization.com/projects/pysamoo/
Installation
The official release is always available at PyPi:
.. code:: bash
pip install -U pysamoo
.. _Usage:
Usage
We refer here to our documentation for all the details. However, for instance, executing NSGA2:
.. code:: python
from pymoo.optimize import minimize
from pymoo.problems.multi.zdt import ZDT1
from pymoo.visualization.scatter import Scatter
from pysamoo.algorithms.ssansga2 import SSANSGA2
problem = ZDT1(n_var=10)
algorithm = SSANSGA2(n_initial_doe=50,
n_infills=10,
surr_pop_size=100,
surr_n_gen=50)
res = minimize(
problem,
algorithm,
('n_evals', 200),
seed=1,
verbose=True)
plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, facecolor="none", edgecolor="red")
plot.show()
.. _Citation:
Citation
If you use this framework, we kindly ask you to cite the following paper:
| Julian Blank, & Kalyanmoy Deb. (2022). pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python. <https://arxiv.org/abs/2204.05855>_
|
| BibTex:
::
@misc{pysamoo,
title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},
author={Julian Blank and Kalyanmoy Deb},
year={2022},
eprint={2204.05855},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
.. _Contact:
Contact
Feel free to contact me if you have any questions:
| Julian Blank <http://julianblank.com>_ (blankjul [at] msu.edu)
| Michigan State University
| Computational Optimization and Innovation Laboratory (COIN)
| East Lansing, MI 48824, USA