own_data_cnn_implementation_keras
own_data_cnn_implementation_keras copied to clipboard
Likely overfit: high train accuracy low test accuracy
My train accuracy is as high as 93%, test accuracy is not even 60%
Train on 646 samples, validate on 162 samples
Epoch 1/20
646/646 [==============================] - 3s 5ms/step - loss: 1.6475 - acc: 0.2771 - val_loss: 1.3762 - val_acc: 0.4012
Epoch 2/20
646/646 [==============================] - 1s 2ms/step - loss: 1.3441 - acc: 0.3746 - val_loss: 1.3336 - val_acc: 0.3951
Epoch 3/20
646/646 [==============================] - 1s 2ms/step - loss: 1.2240 - acc: 0.4628 - val_loss: 1.2016 - val_acc: 0.4506
Epoch 4/20
646/646 [==============================] - 1s 2ms/step - loss: 1.0834 - acc: 0.5325 - val_loss: 1.1964 - val_acc: 0.4012
Epoch 5/20
646/646 [==============================] - 1s 2ms/step - loss: 1.0213 - acc: 0.5666 - val_loss: 1.1028 - val_acc: 0.4321
Epoch 6/20
646/646 [==============================] - 1s 2ms/step - loss: 0.8154 - acc: 0.6625 - val_loss: 1.0602 - val_acc: 0.5864
Epoch 7/20
646/646 [==============================] - 1s 2ms/step - loss: 0.7496 - acc: 0.7198 - val_loss: 1.0646 - val_acc: 0.5370
Epoch 8/20
646/646 [==============================] - 1s 2ms/step - loss: 0.6410 - acc: 0.7554 - val_loss: 1.0732 - val_acc: 0.5123
Epoch 9/20
646/646 [==============================] - 1s 2ms/step - loss: 0.5153 - acc: 0.8204 - val_loss: 1.2143 - val_acc: 0.5617
Epoch 10/20
646/646 [==============================] - 1s 2ms/step - loss: 0.4199 - acc: 0.8452 - val_loss: 1.2830 - val_acc: 0.5617
Epoch 11/20
646/646 [==============================] - 1s 2ms/step - loss: 0.3557 - acc: 0.8607 - val_loss: 1.3736 - val_acc: 0.5679
Epoch 12/20
646/646 [==============================] - 1s 2ms/step - loss: 0.3054 - acc: 0.8947 - val_loss: 1.3489 - val_acc: 0.5617
Epoch 13/20
646/646 [==============================] - 1s 2ms/step - loss: 0.2247 - acc: 0.9257 - val_loss: 1.6261 - val_acc: 0.5864
Epoch 14/20
646/646 [==============================] - 1s 2ms/step - loss: 0.2627 - acc: 0.9164 - val_loss: 1.3588 - val_acc: 0.5864
Epoch 15/20
646/646 [==============================] - 1s 2ms/step - loss: 0.2434 - acc: 0.9133 - val_loss: 1.5136 - val_acc: 0.5864
Epoch 16/20
646/646 [==============================] - 1s 2ms/step - loss: 0.1817 - acc: 0.9427 - val_loss: 1.8481 - val_acc: 0.6235
Epoch 17/20
646/646 [==============================] - 1s 2ms/step - loss: 0.1826 - acc: 0.9427 - val_loss: 1.6952 - val_acc: 0.6049
Epoch 18/20
646/646 [==============================] - 1s 2ms/step - loss: 0.1354 - acc: 0.9567 - val_loss: 2.2561 - val_acc: 0.5926
Epoch 19/20
646/646 [==============================] - 1s 2ms/step - loss: 0.1587 - acc: 0.9365 - val_loss: 2.0255 - val_acc: 0.5864
Epoch 20/20
646/646 [==============================] - 1s 2ms/step - loss: 0.1892 - acc: 0.9396 - val_loss: 2.1586 - val_acc: 0.5432
Now test ('Test Loss:', 2.15857571731379) ('Test accuracy:', 0.5432098765432098)