recommendation icon indicating copy to clipboard operation
recommendation copied to clipboard

Recommendation System using ML and DL

Recommendation Systems

This is a workshop on using Machine Learning and Deep Learning Techniques to build Recommendation Systesm

  • Theory: ML & DL Formulation, Prediction vs. Ranking, Similiarity, Biased vs. Unbiased
  • Paradigms: Content-based, Collaborative filtering, Knowledge-based, Hybrid and Ensembles
  • Data: Tabular, Images, Text (Sequences)
  • Models: (Deep) Matrix Factorisation, Auto-Encoders, Wide & Deep, Rank-Learning, Sequence Modelling
  • Methods: Explicit vs. implicit feedback, User-Item matrix, Embeddings, Convolution, Recurrent, Domain Signals: location, time, context, social,
  • Process: Setup, Encode & Embed, Design, Train & Select, Serve & Scale, Measure, Test & Improve
  • Tools: python-data-stack: numpy, pandas, scikit-learn, keras, spacy, implicit, lightfm

Notes & Slides

Notebooks

  • Movies - Movielens

    • 01-Acquire
    • 02-Augment
    • 03-Refine
    • 04-Transform
    • 05-Evaluation
    • 06-Model-Baseline
    • 07-Feature-extractor
    • 08-Model-Matrix-Factorization
    • 09-Model-Matrix-Factorization-with-Bias
    • 10-Model-MF-NNMF
    • 11-Model-Deep-Matrix-Factorization
    • 12-Model-Neural-Collaborative-Filtering
    • 13-Model-Implicit-Matrix-Factorization
    • 14-Features-Image
    • 15-Features-NLP
  • Ecommerce - YooChoose

    • 01-Data-Preparation
    • 02-Models
  • News - Hackernews

  • Product - Groceries

Python Libraries

Deep Recommender Libraries

Matrix Factorisation Based Libraries

  • Implicit - Implicit Matrix Factorisation
  • QMF - Implicit Matrix Factorisation
  • Lightfm - For Hybrid Recommedations
  • Surprise - Scikit-learn type api for traditional alogrithms

Similarity Search Libraries

  • Annoy - Approximate Nearest Neighbour
  • NMSLib - kNN methods
  • FAISS - Similarity search and clustering

Content-based Libraries

  • Cornac - Leverage Auxiliary Data (Images, Text, Social Networks)

Learning Resources

Reference Slides

Benchmarks

Algorithms & Approaches

Evaluations