mm-cot
mm-cot copied to clipboard
experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json
when i run : run_training.sh
get :
$ bash run_training.sh args Namespace(data_root='data', output_dir='experiments', model='allenai/unifiedqa-t5-base', options=['A', 'B', 'C', 'D', 'E'], epoch=20, lr=5e-05, bs=8, input_len=512, output_len=512, eval_bs=4, eval_acc=10, train_split='train', val_split='val', test_split='test', use_generate=False, final_eval=True, user_msg='rationale', img_type='detr', eval_le=None, test_le=None, evaluate_dir=None, caption_file='data/captions.json', use_caption=False, prompt_format='QCM-LE', seed=42) ====Input Arguments==== { "data_root": "data", "output_dir": "experiments", "model": "allenai/unifiedqa-t5-base", "options": [ "A", "B", "C", "D", "E" ], "epoch": 20, "lr": 5e-05, "bs": 8, "input_len": 512, "output_len": 512, "eval_bs": 4, "eval_acc": 10, "train_split": "train", "val_split": "val", "test_split": "test", "use_generate": false, "final_eval": true, "user_msg": "rationale", "img_type": "detr", "eval_le": null, "test_le": null, "evaluate_dir": null, "caption_file": "data/captions.json", "use_caption": false, "prompt_format": "QCM-LE", "seed": 42 } img_features size: (11208, 100, 256) number of train problems: 12726
number of val problems: 4241
number of test problems: 4241
[16:21:38] [Model]: Loading allenai/unifiedqa-t5-base... main.py:68
[Data]: Reading data... main.py:69
Some weights of T5ForMultimodalGeneration were not initialized from the model checkpoint at allenai/unifiedqa-t5-base and are newly initialized: ['gate_dense.bias', 'mha_layer.in_proj_bias', 'mha_layer.in_proj_weight', 'mha_layer.out_proj.weight', 'mha_layer.out_proj.bias', 'gate_dense.weight', 'image_dense.weight', 'image_dense.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
model parameters: 226643712
***** Running training *****
Num examples = 12726
Num Epochs = 20
Instantaneous batch size per device = 8
Total train batch size (w. parallel, distributed & accumulation) = 16
Gradient Accumulation steps = 1
Total optimization steps = 15920
0%| | 0/15920 [00:00<?, ?it/s]Traceback (most recent call last):
File "/home/Workspace/sxk/2023/mm-cot-main/main.py", line 380, in cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)
0%| | 0/15920 [00:03<?, ?it/s]args Namespace(data_root='data', output_dir='experiments', model='allenai/unifiedqa-t5-base', options=['A', 'B', 'C', 'D', 'E'], epoch=20, lr=5e-05, bs=8, input_len=512, output_len=64, eval_bs=4, eval_acc=10, train_split='train', val_split='val', test_split='test', use_generate=False, final_eval=True, user_msg='answer', img_type='detr', eval_le='experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json', test_le='experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json', evaluate_dir=None, caption_file='data/captions.json', use_caption=False, prompt_format='QCMG-A', seed=42) ====Input Arguments==== { "data_root": "data", "output_dir": "experiments", "model": "allenai/unifiedqa-t5-base", "options": [ "A", "B", "C", "D", "E" ], "epoch": 20, "lr": 5e-05, "bs": 8, "input_len": 512, "output_len": 64, "eval_bs": 4, "eval_acc": 10, "train_split": "train", "val_split": "val", "test_split": "test", "use_generate": false, "final_eval": true, "user_msg": "answer", "img_type": "detr", "eval_le": "experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json", "test_le": "experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json", "evaluate_dir": null, "caption_file": "data/captions.json", "use_caption": false, "prompt_format": "QCMG-A", "seed": 42 } img_features size: (11208, 100, 256) number of train problems: 12726
number of val problems: 4241
number of test problems: 4241
[16:22:05] [Model]: Loading allenai/unifiedqa-t5-base... main.py:68
[Data]: Reading data... main.py:69
Some weights of T5ForMultimodalGeneration were not initialized from the model checkpoint at allenai/unifiedqa-t5-base and are newly initialized: ['gate_dense.bias', 'mha_layer.out_proj.bias', 'gate_dense.weight', 'image_dense.weight', 'mha_layer.in_proj_bias', 'image_dense.bias', 'mha_layer.in_proj_weight', 'mha_layer.out_proj.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Traceback (most recent call last):
File "/home/Workspace/sxk/2023/mm-cot-main/main.py", line 380, in
Environment Linux version 3.10.0-693.el7.x86_64 ([email protected]) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-16) (GCC) ) https://github.com/hpcaitech/ColossalAI/issues/1 SMP Tue Aug 22 21:09:27 UTC 2017
python=3.10.9
conda 4.14.0
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Jun__8_16:49:14_PDT_2022 Cuda compilation tools, release 11.7, V11.7.99 Build cuda_11.7.r11.7/compiler.31442593_0
Based on the information you provided, the path is incorrect, maybe you can change the path in your *.sh file like this:
--eval_le models/rationale/predictions_ans_eval.json
However, the real path depends on the place where your "predictions_ans_eval.json" file is.
Based on the information you provided, the path is incorrect, maybe you can change the path in your *.sh file like this:
--eval_le models/rationale/predictions_ans_eval.jsonHowever, the real path depends on the place where your "predictions_ans_eval.json" file is.
thanks where can download "predictions_ans_eval.json" file ? could you share an address to download ? thanks a lot !
Based on the information you provided, the path is incorrect, maybe you can change the path in your *.sh file like this:
--eval_le models/rationale/predictions_ans_eval.jsonHowever, the real path depends on the place where your "predictions_ans_eval.json" file is.thanks where can download "predictions_ans_eval.json" file ? could you share an address to download ? thanks a lot !
I download it from a Google Driver link which is provided in README.md.
Location in README: inference
Google Driver link: models