Alberto F. Martin
Alberto F. Martin
This issue is to document a strange behaviour which is reproduced in `poisson_dev_fe.jl` when the following code is executed: ``` @time begin for i in 1:100_000 smart_sum(manual_uₕ_array_at_qₖ) end end ```...
Hi @fverdugo ... I think that the Dirichlet and Neumann Boundary conditions are flipped in the Darcy's tutorial + RT FEs. In particular, in the Darcy problem, one imposes the...
Just to not forget ... in this PR https://github.com/gridap/GridapP4est.jl/pull/19/files we (@principejavier and me) wrote a more general version of `get_part_ids` and `prun` which decouples the number of MPI tasks in...
Hi @fverdugo, we know that the current implementation of `discover_snd_parts` is not scalable. However, the user might not know that. While we dont have an scalable implementation I would warn...
Hi, just reporting that the docstring for `Ibarrier` is actually describing the semantics of `barrier`. https://github.com/JuliaParallel/MPI.jl/blob/8c91e660a60604927eaa522cdb5eb76af4368ec8/src/collective.jl#L19 Best regards, @amartinhuertas
Misc changes I have required in order to support facet integration on non-conforming meshes in GridapP4est.jl
The following MWE: ```julia using Gridap using Gridap.ReferenceFEs reffe=LagrangianRefFE(Float64,QUAD,1) modelH=CartesianDiscreteModel((0,1,0,1),(1,1)) modelh=refine(modelH,2) XH = TestFESpace(modelH,reffe) Xh = TestFESpace(modelh,reffe) xH = get_fe_basis(XH) uH = zero(XH) σh = Gridap.FESpaces.get_fe_dof_basis(Xh) σh(xH) # Fails σh(uH)...
Hi @JordiManyer, when I run the following MWE: ``` using Gridap using Gridap.Adaptivity modelH=CartesianDiscreteModel((0,1,0,1),(1,1)) modelh=Gridap.Adaptivity.refine(modelH) f(x)=x[1]+x[2] cf=CellField(f,Triangulation(modelh)) cf_ref1=change_domain(cf,get_triangulation(cf),ReferenceDomain()) print_op_tree(cf_ref1.cell_field) cf_ref2=change_domain(cf,ReferenceDomain()) print_op_tree(cf_ref2.cell_field) ``` I obtain: ``` LazyArray ├─ Fill │ └─...
Solves failing test https://github.com/gridap/Gridap.jl/blob/09b6e9b6fb8588d5087a87054f471ee14559ae3f/test/AdaptivityTests/RefinementRulesTests.jl#L26