RBPN-PyTorch
RBPN-PyTorch copied to clipboard
TypeError: Variable data has to be a tensor, but got builtin_function_or_method
Namespace(chop_forward=False, data_dir='./Vid4', file_list='foliage.txt', future_frame=True, gpu_mode=True, gpus=1, model='weights/RBPN_4x.pth', model_type='RBPN', nFrames=7, other_dataset=True, output='Results/', residual=False, seed=123, testBatchSize=1, threads=1, upscale_factor=4)
===> Loading datasets
===> Building model RBPN
Pre-trained SR model is loaded.
Traceback (most recent call last):
File "eval.py", line 82, in <module>
input = Variable(input).cuda(gpus_list[0])
TypeError: Variable data has to be a tensor, but got builtin_function_or_method
my eval.py:
from __future__ import print_function
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from rbpn import Net as RBPN
from data import get_test_set
from functools import reduce
import numpy as np
from scipy.misc import imsave
#from keras.preprocessing.image import save_img
import scipy.io as sio
import time
import cv2
import math
import pdb
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--chop_forward', type=bool, default=False)
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--data_dir', type=str, default='./Vid4')
parser.add_argument('--file_list', type=str, default='foliage.txt')
parser.add_argument('--other_dataset', type=bool, default=True, help="use other dataset than vimeo-90k")
parser.add_argument('--future_frame', type=bool, default=True, help="use future frame")
parser.add_argument('--nFrames', type=int, default=7)
parser.add_argument('--model_type', type=str, default='RBPN')
parser.add_argument('--residual', type=bool, default=False)
parser.add_argument('--output', default='Results/', help='Location to save checkpoint models')
parser.add_argument('--model', default='weights/RBPN_4x.pth', help='sr pretrained base model')
opt = parser.parse_args()
gpus_list=range(opt.gpus)
print(opt)
cuda = opt.gpu_mode
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
test_set = get_test_set(opt.data_dir, opt.nFrames, opt.upscale_factor, opt.file_list, opt.other_dataset, opt.future_frame)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model ', opt.model_type)
if opt.model_type == 'RBPN':
model = RBPN(num_channels=3, base_filter=256, feat = 64, num_stages=3, n_resblock=5, nFrames=opt.nFrames, scale_factor=opt.upscale_factor)
if cuda:
model = torch.nn.DataParallel(model, device_ids=gpus_list)
model.load_state_dict(torch.load(opt.model, map_location=lambda storage, loc: storage))
print('Pre-trained SR model is loaded.')
if cuda:
model = model.cuda(gpus_list[0])
def eval():
model.eval()
count=1
avg_psnr_predicted = 0.0
for batch in testing_data_loader:
input, target, neigbor, flow, bicubic = batch[0], batch[1], batch[2], batch[3], batch[4]
if __name__ == '__main__': <<<---- this is because i use Windows
with torch.no_grad():
input = Variable(input).cuda(gpus_list[0])
bicubic = Variable(bicubic).cuda(gpus_list[0])
neigbor = [Variable(j).cuda(gpus_list[0]) for j in neigbor]
flow = [Variable(j).cuda(gpus_list[0]).float() for j in flow]
t0 = time.time()
if opt.chop_forward:
with torch.no_grad():
prediction = chop_forward(input, neigbor, flow, model, opt.upscale_factor)
else:
with torch.no_grad():
prediction = model(input, neigbor, flow)
if opt.residual:
prediction = prediction + bicubic
t1 = time.time()
print("===> Processing: %s || Timer: %.4f sec." % (str(count), (t1 - t0)))
save_img(prediction.cpu().data, str(count), True)
#save_img(target, str(count), False)
#prediction=prediction.cpu()
#prediction = prediction.data[0].numpy().astype(np.float32)
#prediction = prediction*255.
#target = target.squeeze().numpy().astype(np.float32)
#target = target*255.
#psnr_predicted = PSNR(prediction,target, shave_border=opt.upscale_factor)
#avg_psnr_predicted += psnr_predicted
count+=1
#print("PSNR_predicted=", avg_psnr_predicted/count)
def save_img(img, img_name, pred_flag):
save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0)
# save img
save_dir=os.path.join(opt.output, opt.data_dir, os.path.splitext(opt.file_list)[0]+'_'+str(opt.upscale_factor)+'x')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if pred_flag:
save_fn = save_dir +'/'+ img_name+'_'+opt.model_type+'F'+str(opt.nFrames)+'.png'
else:
save_fn = save_dir +'/'+ img_name+'.png'
cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
def PSNR(pred, gt, shave_border=0):
height, width = pred.shape[:2]
pred = pred[1+shave_border:height - shave_border, 1+shave_border:width - shave_border, :]
gt = gt[1+shave_border:height - shave_border, 1+shave_border:width - shave_border, :]
imdff = pred - gt
rmse = math.sqrt(np.mean(imdff ** 2))
if rmse == 0:
return 100
return 20 * math.log10(255.0 / rmse)
def chop_forward(x, neigbor, flow, model, scale, shave=8, min_size=2000, nGPUs=opt.gpus):
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave, w_half + shave
inputlist = [
[x[:, :, 0:h_size, 0:w_size], [j[:, :, 0:h_size, 0:w_size] for j in neigbor], [j[:, :, 0:h_size, 0:w_size] for j in flow]],
[x[:, :, 0:h_size, (w - w_size):w], [j[:, :, 0:h_size, (w - w_size):w] for j in neigbor], [j[:, :, 0:h_size, (w - w_size):w] for j in flow]],
[x[:, :, (h - h_size):h, 0:w_size], [j[:, :, (h - h_size):h, 0:w_size] for j in neigbor], [j[:, :, (h - h_size):h, 0:w_size] for j in flow]],
[x[:, :, (h - h_size):h, (w - w_size):w], [j[:, :, (h - h_size):h, (w - w_size):w] for j in neigbor], [j[:, :, (h - h_size):h, (w - w_size):w] for j in flow]]]
if w_size * h_size < min_size:
outputlist = []
for i in range(0, 4, nGPUs):
with torch.no_grad():
input_batch = inputlist[i]#torch.cat(inputlist[i:(i + nGPUs)], dim=0)
output_batch = model(input_batch[0], input_batch[1], input_batch[2])
outputlist.extend(output_batch.chunk(nGPUs, dim=0))
else:
outputlist = [
chop_forward(patch[0], patch[1], patch[2], model, scale, shave, min_size, nGPUs) \
for patch in inputlist]
h, w = scale * h, scale * w
h_half, w_half = scale * h_half, scale * w_half
h_size, w_size = scale * h_size, scale * w_size
shave *= scale
with torch.no_grad():
output = Variable(x.data.new(b, c, h, w))
output[:, :, 0:h_half, 0:w_half] \
= outputlist[0][:, :, 0:h_half, 0:w_half]
output[:, :, 0:h_half, w_half:w] \
= outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
output[:, :, h_half:h, 0:w_half] \
= outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
output[:, :, h_half:h, w_half:w] \
= outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
return output
##Eval Start!!!!
eval()