QWen3-0.6B NPU 部署,Convert for QNN, QualComn's NPU,Broad cast error
参照文档部署Qwen3-0.6B, 将模型转换qnn后端
python3 npu/generate_llm_qnn.py --model model --soc_id=57 --dsp_arch=v75时遇到如下报错:
Step1: Make IO
blockSize=128 in main, 148
modelPath.c_str()=s model/llm.mnn in main, 152
llmConfigPath.c_str()=s model/llm_config.json in main, 153
CPU Group: [ 20 21 23 17 19 22 16 18 ], 800000 - 4100000
CPU Group: [ 14 13 6 1 15 3 5 4 7 12 0 2 ], 800000 - 5100000
CPU Group: [ 10 11 9 8 ], 800000 - 5200000
The device supports: i8sdot:0, fp16:0, i8mm: 0, sve2: 0, sme2: 0
Successfully generate tmp/testdir/128/input.mnn and tmp/testdir/128/output.mnn.
Successfully generate tmp/testdir/1/input.mnn and tmp/testdir/1/output.mnn.
Cost: 2.0691800117492676 s
Step2: Seperate Model
model: /home/user/workspace/aiinfracompile/MNN/transformers/llm/export/model/llm.mnn
Convert for QNN, QualComn's NPU
gCacheDir.c_str()=s qnn in main, 884
CPU Group: [ 20 21 23 17 19 22 16 18 ], 800000 - 4100000
CPU Group: [ 14 13 6 1 15 3 5 4 7 12 0 2 ], 800000 - 5100000
CPU Group: [ 10 11 9 8 ], 800000 - 5200000
The device supports: i8sdot:0, fp16:0, i8mm: 0, sve2: 0, sme2: 0
[Warning]: No QnnDevice_getPlatformInfo APILoad Cache file error.
Load Cache file error.
Broad cast error, dim1 = 1024, dim2 = 0
Compute Shape Error for /Add_3_output_0
Load Cache file error.
Broad cast error, dim1 = 1024, dim2 = 0
Compute Shape Error for /Add_8_output_0
Load Cache file error.
Broad cast error, dim1 = 1024, dim2 = 0
Compute Shape Error for /Add_13_output_0
Load Cache file error.
Broad cast error, dim1 = 1024, dim2 = 0
Compute Shape Error for /Add_18_output_0
Load Cache file error.
如果忽略这个问题,直接部署会遇到新问题,看上去是一些子图没法正常执行
manet:/data/local/tmp/MNN # ./llm_demo model/config_qnn.json
Can't open file:/sys/devices/system/cpu/cpufreq/boost/affected_cpus
CPU Group: [ 0 1 ], 364800 - 2265600
CPU Group: [ 5 6 ], 499200 - 2956800
CPU Group: [ 2 3 4 ], 499200 - 3148800
CPU Group: [ 7 ], 480000 - 3302400
(last_midr & (CPUINFO_ARM_MIDR_IMPLEMENTER_MASK | CPUINFO_ARM_MIDR_PART_MASK))=0x 4100d820 in _getInfoArm, 1234
The device supports: i8sdot:1, fp16:1, i8mm: 1, sve2: 0, sme2: 0
config path is model/config_qnn.json
main, 266, cost time: 393.181000 ms
Prepare for tuning opt Begin
Prepare for tuning opt End
main, 274, cost time: 3016.519043 ms
User: test
A: Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
Error in file /home/yinrun/workspace/aiinfracompile/MNN/source/backend/qnn/backend/QNNBackend.cpp, line 888: error code 1003
!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!^C
这个问题有解决吗
这个问题有解决吗
没有,没找到原因
你好请问有遇到过这个问题吗
12-05 18:31:34.428 31510 31510 E MNNJNI : Compute Shape Error for qnn/graph0.bin
现在Qwen3-0.6B在8gen3的设备上会有这个问题,在8gen5上正常,这个原因我们暂时也不太清楚。
我在将qwen3-4b,qwen3-1.7b模型编译的时候遇到了相同的问题,我是编译成elite版本(--soc_id=69 --dsp_arch=v79),请问现在有办法解决吗? 如果我忽略这个转换问题,直接在手机上运行llm_demo会出现segment_fault
现在Qwen3-0.6B在8gen3的设备上会有这个问题,在8gen5上正常,这个原因我们暂时也不太清楚。
我尝试的8gen5也不行
现在Qwen3-0.6B在8gen3的设备上会有这个问题,在8gen5上正常,这个原因我们暂时也不太清楚。
我尝试的8gen5也不行
你在导出模型的时候有打开--seperate_embed, 在执行阶段需要embeddings_bf16.bin文件。