CostSensitiveClassification
CostSensitiveClassification copied to clipboard
CS-RF parallel error.
When run CS-RF using n_job=2
on jupyter notebook, I got the following error. Python version: 2.7. And when setting n_job=1
, no error occurs.
/usr/lib/python2.7/site-packages/costcla/models/bagging.pyc in fit(self, X, y, cost_mat, sample_weight)
273 seeds[starts[i]:starts[i + 1]],
274 verbose=self.verbose)
--> 275 for i in range(n_jobs))
276
277 # Reduce
/usr/lib64/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
787 # consumption.
788 self._iterating = False
--> 789 self.retrieve()
790 # Make sure that we get a last message telling us we are done
791 elapsed_time = time.time() - self._start_time
/usr/lib64/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
697 try:
698 if getattr(self._backend, 'supports_timeout', False):
--> 699 self._output.extend(job.get(timeout=self.timeout))
700 else:
701 self._output.extend(job.get())
/usr/lib64/python2.7/multiprocessing/pool.pyc in get(self, timeout)
552 return self._value
553 else:
--> 554 raise self._value
555
556 def _set(self, i, obj):
MaybeEncodingError: Error sending result: '[([CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True), CostSensitiveDecisionTreeClassifier(criterion='direct_cost',
criterion_weight=False, max_depth=None,
max_features='auto', min_gain=0.001, min_samples_leaf=1,
min_samples_split=2, num_pct=100, pruned=True)], [array([False, True, False, ..., True, False, True], dtype=bool), array([False, True, True, ..., True, False, False], dtype=bool), array([ True, True, True, ..., True, False, True], dtype=bool), array([ True, True, True, ..., True, True, True], dtype=bool), array([False, False, True, ..., True, True, True], dtype=bool), array([ True, True, True, ..., True, True, True], dtype=bool), array([ True, True, True, ..., True, False, True], dtype=bool), array([ True, True, False, ..., True, True, False], dtype=bool)], [array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39])])]'. Reason: 'PicklingError("Can't pickle <class costcla.models.cost_tree._tree_class at 0x7261ae0>: it's not found as costcla.models.cost_tree._tree_class",)'