handson-ml2
handson-ml2 copied to clipboard
InaccessibleTensorError: The tensor 'Tensor("mul:0", shape=(), dtype=float32)' cannot be accessed here
In Chapter 12,
class ReconstructingRegressor(keras.models.Model):
def __init__(self, output_dim, **kwargs):
super().__init__(**kwargs)
self.hidden = [keras.layers.Dense(30, activation="selu",
kernel_initializer="lecun_normal")
for _ in range(5)]
self.out = keras.layers.Dense(output_dim)
# TODO: check https://github.com/tensorflow/tensorflow/issues/26260
#self.reconstruction_mean = keras.metrics.Mean(name="reconstruction_error")
def build(self, batch_input_shape):
n_inputs = batch_input_shape[-1]
self.reconstruct = keras.layers.Dense(n_inputs)
super().build(batch_input_shape)
def call(self, inputs, training=None):
Z = inputs
for layer in self.hidden:
Z = layer(Z)
reconstruction = self.reconstruct(Z)
recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
self.add_loss(0.05 * recon_loss)
#if training:
# result = self.reconstruction_mean(recon_loss)
# self.add_metric(result)
return self.out(Z)
Making with the above code and training it raised error:
---------------------------------------------------------------------------
InaccessibleTensorError Traceback (most recent call last)
<ipython-input-19-455f20b90fc1> in <module>
1 model = ReconstructingRegressor(1)
2 model.compile(loss="mse", optimizer="nadam")
----> 3 history = model.fit(tf.random.normal((10, 10)), tf.random.normal((10, 1)), epochs=2)
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
869 # This is the first call of __call__, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
724 self._concrete_stateful_fn = (
725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 726 *args, **kwds))
727
728 def invalid_creator_scope(*unused_args, **unused_kwds):
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2967 args, kwargs = None, None
2968 with self._lock:
-> 2969 graph_function, _ = self._maybe_define_function(args, kwargs)
2970 return graph_function
2971
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3204 arg_names=arg_names,
3205 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206 capture_by_value=self._capture_by_value),
3207 self._function_attributes,
3208 function_spec=self.function_spec,
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
635 return out
636
~\anaconda3\envs\ml\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
InaccessibleTensorError: in user code:
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\training.py:805 train_function *
return step_function(self, iterator)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3417 _call_for_each_replica
return fn(*args, **kwargs)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\training.py:788 run_step **
outputs = model.train_step(data)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\training.py:756 train_step
y, y_pred, sample_weight, regularization_losses=self.losses)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:229 __call__
reg_loss = math_ops.add_n(regularization_losses)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
return target(*args, **kwargs)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\ops\math_ops.py:3572 add_n
return gen_math_ops.add_n(inputs, name=name)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\ops\gen_math_ops.py:418 add_n
"AddN", inputs=inputs, name=name)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\framework\op_def_library.py:750 _apply_op_helper
attrs=attr_protos, op_def=op_def)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\framework\func_graph.py:588 _create_op_internal
inp = self.capture(inp)
C:\Users\eck\anaconda3\envs\ml\lib\site-packages\tensorflow\python\framework\func_graph.py:638 capture
% (tensor, tensor.graph, self))
InaccessibleTensorError: The tensor 'Tensor("mul:0", shape=(), dtype=float32)' cannot be accessed here: it is defined in another function or code block. Use return values, explicit Python locals or TensorFlow collections to access it. Defined in: FuncGraph(name=build_graph, id=2882832177736); accessed from: FuncGraph(name=train_function, id=2882832146952).
Ran in Colab - getting the same problem. It's to do with the add_loss function. add_loss(0.05) throws the same error. add_loss(lambda: 0.05) doesn't throw an error
including the recon_loss always throws the error
Hi @GeorgeEngland ,
Thanks for your feedback. Unfortunately, due to an issue introduced in TF 2.2 (#46858), it is currently not possible to use add_loss() along with the build() method. So I updated the code in the notebook: I now create the reconstruct layer in the constructor instead of the build() method. Unfortunately, this means that the number of units in this layer must be hard-coded (alternatively, it could be passed as an argument to the constructor).
Here's the updated code:
class ReconstructingRegressor(keras.models.Model):
def __init__(self, output_dim, **kwargs):
super().__init__(**kwargs)
self.hidden = [keras.layers.Dense(30, activation="selu",
kernel_initializer="lecun_normal")
for _ in range(5)]
self.out = keras.layers.Dense(output_dim)
self.reconstruct = keras.layers.Dense(8) # workaround for TF issue #46858
self.reconstruction_mean = keras.metrics.Mean(name="reconstruction_error")
#Commented out due to TF issue #46858, see the note above
#def build(self, batch_input_shape):
# n_inputs = batch_input_shape[-1]
# self.reconstruct = keras.layers.Dense(n_inputs)
# super().build(batch_input_shape)
def call(self, inputs, training=None):
Z = inputs
for layer in self.hidden:
Z = layer(Z)
reconstruction = self.reconstruct(Z)
recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
self.add_loss(0.05 * recon_loss)
if training:
result = self.reconstruction_mean(recon_loss)
self.add_metric(result)
return self.out(Z)