handson-ml
handson-ml copied to clipboard
Output of transformation pipeline different than shown in book
@ageron I directly downloaded your code and run it in jupyter notebook, all the code it the same but for some reason when I run the pipeline the numpy array is different than yours
` from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ('attribs_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()), ])
housing_num_tr = num_pipeline.fit_transform(housing_num) housing_num_tr `
And the output is
array([[-0.94135046, 1.34743822, 0.02756357, ..., 0.01739526, 0.00622264, -0.12112176], [ 1.17178212, -1.19243966, -1.72201763, ..., 0.56925554, -0.04081077, -0.81086696], [ 0.26758118, -0.1259716 , 1.22045984, ..., -0.01802432, -0.07537122, -0.33827252], ..., [-1.5707942 , 1.31001828, 1.53856552, ..., -0.5092404 , -0.03743619, 0.32286937], [-1.56080303, 1.2492109 , -1.1653327 , ..., 0.32814891, -0.05915604, -0.45702273], [-1.28105026, 2.02567448, -0.13148926, ..., 0.01407228, 0.00657083, -0.12169672]]) when in your book it is:
array([[-1.15604281, 0.77194962, 0.74333089, ..., -0.31205452, -0.08649871, 0.15531753], [-1.17602483, 0.6596948 , -1.1653172 , ..., 0.21768338, -0.03353391, -0.83628902], [ 1.18684903, -1.34218285, 0.18664186, ..., -0.46531516, -0.09240499, 0.4222004 ], ..., [ 1.58648943, -0.72478134, -1.56295222, ..., 0.3469342 , -0.03055414, -0.52177644], [ 0.78221312, -0.85106801, 0.18664186, ..., 0.02499488, 0.06150916, -0.30340741], [-1.43579109, 0.99645926, 1.85670895, ..., -0.22852947, -0.09586294, 0.10180567]])
I have pasted multiple note books to try but it ends up the same, can you please tell me what I am doing wrong?