generic map-cong and such
Standard library provides map-cong, map-id, map-compose as related to the propositional equality ≡. But the case of List over Setoid is highly usable. And I suggest this:
-----------------------------------------------------------------------
module OfMapsToSetoid {α β β=} (A : Set α) (S : Setoid β β=)
where
open Setoid S using (_≈_) renaming (Carrier to B; reflexive to ≈reflexive;
refl to ≈refl; sym to ≈sym; trans to ≈trans)
infixl 2 _≈∘_
_≈∘_ : Rel (A → B) _
f ≈∘ g = (x : A) → f x ≈ g x
≈∘refl : Reflexive _≈∘_
≈∘refl _ = ≈refl
≈∘reflexive : _≡_ ⇒ _≈∘_
≈∘reflexive {x} refl = ≈∘refl {x}
≈∘sym : Symmetric _≈∘_
≈∘sym f≈∘g = ≈sym ∘ f≈∘g
≈∘trans : Transitive _≈∘_
≈∘trans f≈∘g g≈∘h x = ≈trans (f≈∘g x) (g≈∘h x)
≈∘Equiv : IsEquivalence _≈∘_
≈∘Equiv = record{ refl = \{x} → ≈∘refl {x}
; sym = \{x} {y} → ≈∘sym {x} {y}
; trans = \{x} {y} {z} → ≈∘trans {x} {y} {z} }
≈∘Setoid : Setoid (α ⊔ β) (α ⊔ β=)
≈∘Setoid = record{ Carrier = A → B
; _≈_ = _≈∘_
; isEquivalence = ≈∘Equiv }
lSetoid = ListPoint.setoid S
open Setoid lSetoid using () renaming (_≈_ to _=l_; refl to =l-refl)
gen-map-cong : {f g : A → B} → f ≈∘ g → (xs : List A) → map f xs =l map g xs
gen-map-cong _ [] = =l-refl
gen-map-cong f≈∘g (x ∷ xs) = (f≈∘g x) ∷p (gen-map-cong f≈∘g xs)
...
---------------------------------------------------------------------------------
Yup at some point I'll get around to porting all the relevant proofs in Data.List.Properties to Data.List.Relation.Equality.Setoid.
But there is a more general condition for map f xs ≋ map g ys, which is widely used:
map-pointwise-≈ : {f g : A → B} {xs ys : List A} → length xs ≡ length ys →
All id (zipWith (\x y → f x ≈ g y) xs ys) →
map f xs ≋ map g ys
Here B is the carrier of a setoid, which setoid exports ≈, and ≋ is the pointwise equality induced by ≈. Has lib-1.1 something for this?
Has lib-1.1 something for this?
No, nothing that general.
Yup at some point I'll get around to porting all the relevant proofs in
Data.List.PropertiestoData.List.Relation.Equality.Setoid.
Cf. #2360 / #2393 and discussion of module parametrisation in #2397 ... time to open a fresh issue with a roadmap/tasklist for "all the relevant proofs"?