TaskGrasp icon indicating copy to clipboard operation
TaskGrasp copied to clipboard

Task Intents do not seem to be used at all

Open Esilocke opened this issue 2 years ago • 0 comments

Hi, I would like to use TaskGrasp to perform inference on unknown objects, and was testing the pre-trained model on the examples given and noticed a lot of inconsistencies with the model. I ran the following with a fixed seed to obtain some fixed grasps: python gcngrasp/infer.py cfg/eval/gcngrasp/gcngrasp_split_mode_t_split_idx_3_.yml --obj_name pan --obj_class pan.n.01 --task pour

and obtained the following probs:

[7.31565019e-17 1.00835660e-26 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 3.35938152e-24 0.00000000e+00 1.39360195e-02 9.48255777e-01
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 5.01195148e-35 0.00000000e+00 1.15180841e-25
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 7.37746775e-01 8.56916785e-01 0.00000000e+00 6.92874074e-01
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.06931317e-01
 9.46905911e-01 8.34218621e-01 9.40230668e-01 5.37418902e-01
 8.50025654e-01 8.58030379e-01 1.64440729e-36 3.80094434e-25
 0.00000000e+00 0.00000000e+00]

I then ran the following task: python gcngrasp/infer.py cfg/eval/gcngrasp/gcngrasp_split_mode_t_split_idx_3_.yml --obj_name pan --obj_class pan.n.01 --task cut

Cut is an irrelevant task for pan, however the returned probs are exactly the same:

[7.31565019e-17 1.00835660e-26 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 3.35938152e-24 0.00000000e+00 1.39360195e-02 9.48255777e-01
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 5.01195148e-35 0.00000000e+00 1.15180841e-25
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 7.37746775e-01 8.56916785e-01 0.00000000e+00 6.92874074e-01
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.06931317e-01
 9.46905911e-01 8.34218621e-01 9.40230668e-01 5.37418902e-01
 8.50025654e-01 8.58030379e-01 1.64440729e-36 3.80094434e-25
 0.00000000e+00 0.00000000e+00]

I verified that this is the case for every task from the knowledge graph. Can I check if this is intended? I have followed the exact steps for installation from your readme, with the only code changes being to fix the seed to fix the grasps being sampled.

Esilocke avatar Feb 14 '23 04:02 Esilocke