Deepfake_detection_using_deep_learning
Deepfake_detection_using_deep_learning copied to clipboard
view file
The view file has a if condition where if the device is "gpu" use it else use "cpu", it should be "cuda" and not "gpu" `from django.shortcuts import render, redirect import torch import torchvision from torchvision import transforms, models from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset import os import numpy as np import cv2 import matplotlib.pyplot as plt import face_recognition from torch.autograd import Variable import time import sys from torch import nn import json import glob import copy from torchvision import models import shutil from PIL import Image as pImage import time from django.conf import settings from .forms import VideoUploadForm
index_template_name = 'index.html' predict_template_name = 'predict.html' about_template_name = "about.html"
im_size = 112 mean=[0.485, 0.456, 0.406] std=[0.229, 0.224, 0.225] sm = nn.Softmax() inv_normalize = transforms.Normalize(mean=-1*np.divide(mean,std),std=np.divide([1,1,1],std)) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu'
train_transforms = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((im_size,im_size)), transforms.ToTensor(), transforms.Normalize(mean,std)])
class Model(nn.Module):
def __init__(self, num_classes,latent_dim= 2048, lstm_layers=1 , hidden_dim = 2048, bidirectional = False):
super(Model, self).__init__()
model = models.resnext50_32x4d(pretrained = True)
self.model = nn.Sequential(*list(model.children())[:-2])
self.lstm = nn.LSTM(latent_dim,hidden_dim, lstm_layers, bidirectional)
self.relu = nn.LeakyReLU()
self.dp = nn.Dropout(0.4)
self.linear1 = nn.Linear(2048,num_classes)
self.avgpool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
batch_size,seq_length, c, h, w = x.shape
x = x.view(batch_size * seq_length, c, h, w)
fmap = self.model(x)
x = self.avgpool(fmap)
x = x.view(batch_size,seq_length,2048)
x_lstm,_ = self.lstm(x,None)
return fmap,self.dp(self.linear1(x_lstm[:,-1,:]))
class validation_dataset(Dataset): def init(self,video_names,sequence_length=60,transform = None): self.video_names = video_names self.transform = transform self.count = sequence_length
def __len__(self):
return len(self.video_names)
def __getitem__(self,idx):
video_path = self.video_names[idx]
frames = []
a = int(100/self.count)
first_frame = np.random.randint(0,a)
for i,frame in enumerate(self.frame_extract(video_path)):
#if(i % a == first_frame):
faces = face_recognition.face_locations(frame)
try:
top,right,bottom,left = faces[0]
frame = frame[top:bottom,left:right,:]
except:
pass
frames.append(self.transform(frame))
if(len(frames) == self.count):
break
"""
for i,frame in enumerate(self.frame_extract(video_path)):
if(i % a == first_frame):
frames.append(self.transform(frame))
"""
# if(len(frames)<self.count):
# for i in range(self.count-len(frames)):
# frames.append(self.transform(frame))
#print("no of frames", self.count)
frames = torch.stack(frames)
frames = frames[:self.count]
return frames.unsqueeze(0)
def frame_extract(self,path):
vidObj = cv2.VideoCapture(path)
success = 1
while success:
success, image = vidObj.read()
if success:
yield image
def im_convert(tensor, video_file_name): """ Display a tensor as an image. """ image = tensor.to("cpu").clone().detach() image = image.squeeze() image = inv_normalize(image) image = image.numpy() image = image.transpose(1,2,0) image = image.clip(0, 1) # This image is not used # cv2.imwrite(os.path.join(settings.PROJECT_DIR, 'uploaded_images', video_file_name+'_convert_2.png'),image*255) return image
def im_plot(tensor): image = tensor.cpu().numpy().transpose(1,2,0) b,g,r = cv2.split(image) image = cv2.merge((r,g,b)) image = image*[0.22803, 0.22145, 0.216989] + [0.43216, 0.394666, 0.37645] image = image*255.0 plt.imshow(image.astype('uint8')) plt.show()
def predict(model,img,path = './', video_file_name=""):
fmap,logits = model(img.to(device))
img = im_convert(img[:,-1,:,:,:], video_file_name)
params = list(model.parameters())
weight_softmax = model.linear1.weight.detach().cpu().numpy()
logits = sm(logits)
_,prediction = torch.max(logits,1)
confidence = logits[:,int(prediction.item())].item()*100
print('confidence of prediction:',logits[:,int(prediction.item())].item()*100)
return [int(prediction.item()),confidence]
def plot_heat_map(i, model, img, path = './', video_file_name=''): fmap,logits = model(img.to(device)) params = list(model.parameters()) weight_softmax = model.linear1.weight.detach().cpu().numpy() logits = sm(logits) _,prediction = torch.max(logits,1) idx = np.argmax(logits.detach().cpu().numpy()) bz, nc, h, w = fmap.shape #out = np.dot(fmap[-1].detach().cpu().numpy().reshape((nc, hw)).T,weight_softmax[idx,:].T) out = np.dot(fmap[i].detach().cpu().numpy().reshape((nc, hw)).T,weight_softmax[idx,:].T) predict = out.reshape(h,w) predict = predict - np.min(predict) predict_img = predict / np.max(predict) predict_img = np.uint8(255predict_img) out = cv2.resize(predict_img, (im_size,im_size)) heatmap = cv2.applyColorMap(out, cv2.COLORMAP_JET) img = im_convert(img[:,-1,:,:,:], video_file_name) result = heatmap * 0.5 + img0.8*255
Saving heatmap - Start
heatmap_name = video_file_name+"heatmap"+str(i)+".png" image_name = os.path.join(settings.PROJECT_DIR, 'uploaded_images', heatmap_name) cv2.imwrite(image_name,result)
Saving heatmap - End
result1 = heatmap * 0.5/255 + img*0.8 r,g,b = cv2.split(result1) result1 = cv2.merge((r,g,b)) return image_name
Model Selection
def get_accurate_model(sequence_length): model_name = [] sequence_model = [] final_model = "" list_models = glob.glob(os.path.join(settings.PROJECT_DIR, "models", "*.pt"))
for model_path in list_models:
model_name.append(os.path.basename(model_path))
for model_filename in model_name:
try:
seq = model_filename.split("_")[3]
if int(seq) == sequence_length:
sequence_model.append(model_filename)
except IndexError:
pass # Handle cases where the filename format doesn't match expected
if len(sequence_model) > 1:
accuracy = []
for filename in sequence_model:
acc = filename.split("_")[1]
accuracy.append(acc) # Convert accuracy to float for proper comparison
max_index = accuracy.index(max(accuracy))
final_model = os.path.join(settings.PROJECT_DIR, "models", sequence_model[max_index])
elif len(sequence_model) == 1:
final_model = os.path.join(settings.PROJECT_DIR, "models", sequence_model[0])
else:
print("No model found for the specified sequence length.") # Handle no models found case
return final_model
ALLOWED_VIDEO_EXTENSIONS = set(['mp4','gif','webm','avi','3gp','wmv','flv','mkv'])
def allowed_video_file(filename): #print("filename" ,filename.rsplit('.',1)[1].lower()) if (filename.rsplit('.',1)[1].lower() in ALLOWED_VIDEO_EXTENSIONS): return True else: return False def index(request): if request.method == 'GET': video_upload_form = VideoUploadForm() if 'file_name' in request.session: del request.session['file_name'] if 'preprocessed_images' in request.session: del request.session['preprocessed_images'] if 'faces_cropped_images' in request.session: del request.session['faces_cropped_images'] return render(request, index_template_name, {"form": video_upload_form}) else: video_upload_form = VideoUploadForm(request.POST, request.FILES) if video_upload_form.is_valid(): video_file = video_upload_form.cleaned_data['upload_video_file'] video_file_ext = video_file.name.split('.')[-1] sequence_length = video_upload_form.cleaned_data['sequence_length'] video_content_type = video_file.content_type.split('/')[0] if video_content_type in settings.CONTENT_TYPES: if video_file.size > int(settings.MAX_UPLOAD_SIZE): video_upload_form.add_error("upload_video_file", "Maximum file size 100 MB") return render(request, index_template_name, {"form": video_upload_form})
if sequence_length <= 0:
video_upload_form.add_error("sequence_length", "Sequence Length must be greater than 0")
return render(request, index_template_name, {"form": video_upload_form})
if allowed_video_file(video_file.name) == False:
video_upload_form.add_error("upload_video_file","Only video files are allowed ")
return render(request, index_template_name, {"form": video_upload_form})
saved_video_file = 'uploaded_file_'+str(int(time.time()))+"."+video_file_ext
if settings.DEBUG:
with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file), 'wb') as vFile:
shutil.copyfileobj(video_file, vFile)
request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file)
else:
with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file), 'wb') as vFile:
shutil.copyfileobj(video_file, vFile)
request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file)
request.session['sequence_length'] = sequence_length
return redirect('ml_app:predict')
else:
return render(request, index_template_name, {"form": video_upload_form})
def predict_page(request): if request.method == "GET": # Redirect to 'home' if 'file_name' is not in session if 'file_name' not in request.session: return redirect("ml_app:home") if 'file_name' in request.session: video_file = request.session['file_name'] if 'sequence_length' in request.session: sequence_length = request.session['sequence_length'] path_to_videos = [video_file] video_file_name = os.path.basename(video_file) video_file_name_only = os.path.splitext(video_file_name)[0] # Production environment adjustments if not settings.DEBUG: production_video_name = os.path.join('/home/app/staticfiles/', video_file_name.split('/')[3]) print("Production file name", production_video_name) else: production_video_name = video_file_name
# Load validation dataset
video_dataset = validation_dataset(path_to_videos, sequence_length=sequence_length, transform=train_transforms)
# Load model
if(device == "cuda"):
model = Model(2).cuda() # Adjust the model instantiation according to your model structure
else:
model = Model(2).cpu() # Adjust the model instantiation according to your model structure
model_name = os.path.join(settings.PROJECT_DIR, 'models', get_accurate_model(sequence_length))
path_to_model = os.path.join(settings.PROJECT_DIR, model_name)
model.load_state_dict(torch.load(path_to_model, map_location=torch.device('cpu')))
model.eval()
start_time = time.time()
# Display preprocessing images
print("<=== | Started Videos Splitting | ===>")
preprocessed_images = []
faces_cropped_images = []
cap = cv2.VideoCapture(video_file)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if ret:
frames.append(frame)
else:
break
cap.release()
print(f"Number of frames: {len(frames)}")
# Process each frame for preprocessing and face cropping
padding = 40
faces_found = 0
for i in range(sequence_length):
if i >= len(frames):
break
frame = frames[i]
# Convert BGR to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Save preprocessed image
image_name = f"{video_file_name_only}_preprocessed_{i+1}.png"
image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', image_name)
img_rgb = pImage.fromarray(rgb_frame, 'RGB')
img_rgb.save(image_path)
preprocessed_images.append(image_name)
# Face detection and cropping
face_locations = face_recognition.face_locations(rgb_frame)
if len(face_locations) == 0:
continue
top, right, bottom, left = face_locations[0]
frame_face = frame[top - padding:bottom + padding, left - padding:right + padding]
# Convert cropped face image to RGB and save
rgb_face = cv2.cvtColor(frame_face, cv2.COLOR_BGR2RGB)
img_face_rgb = pImage.fromarray(rgb_face, 'RGB')
image_name = f"{video_file_name_only}_cropped_faces_{i+1}.png"
image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', image_name)
img_face_rgb.save(image_path)
faces_found += 1
faces_cropped_images.append(image_name)
print("<=== | Videos Splitting and Face Cropping Done | ===>")
print("--- %s seconds ---" % (time.time() - start_time))
# No face detected
if faces_found == 0:
return render(request, 'predict_template_name.html', {"no_faces": True})
# Perform prediction
try:
heatmap_images = []
output = ""
confidence = 0.0
for i in range(len(path_to_videos)):
print("<=== | Started Prediction | ===>")
prediction = predict(model, video_dataset[i], './', video_file_name_only)
confidence = round(prediction[1], 1)
output = "REAL" if prediction[0] == 1 else "FAKE"
print("Prediction:", prediction[0], "==", output, "Confidence:", confidence)
print("<=== | Prediction Done | ===>")
print("--- %s seconds ---" % (time.time() - start_time))
# Uncomment if you want to create heat map images
# for j in range(sequence_length):
# heatmap_images.append(plot_heat_map(j, model, video_dataset[i], './', video_file_name_only))
# Render results
context = {
'preprocessed_images': preprocessed_images,
'faces_cropped_images': faces_cropped_images,
'heatmap_images': heatmap_images,
'original_video': production_video_name,
'models_location': os.path.join(settings.PROJECT_DIR, 'models'),
'output': output,
'confidence': confidence
}
if settings.DEBUG:
return render(request, predict_template_name, context)
else:
return render(request, predict_template_name, context)
except Exception as e:
print(f"Exception occurred during prediction: {e}")
return render(request, 'cuda_full.html')
def about(request): return render(request, about_template_name)
def handler404(request,exception): return render(request, '404.html', status=404) def cuda_full(request): return render(request, 'cuda_full.html') `