LUVLi
LUVLi copied to clipboard
[CVPR 2020] Re-hosting of the LUVLi Face Alignment codebase. Please download the codebase from the original MERL website by agreeing to all terms and conditions. By using this code, you agree to MERL'...
LUVLi and UGLLI Face Alignment
The code is officially available here
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and Visibility Likelihood, CVPR 2020
[slides], [1min_talk], [supp],[demo]
UGLLI Face Alignment: Estimating Uncertainty with Gaussian Log-Likelihood Loss, ICCV Workshops on Statistical Deep Learning in Computer Vision 2019
[slides], [poster], [news], [Best Oral Presentation Award]
References
Please cite the following papers if you find this repository useful:
@inproceedings{kumar2020luvli,
title={LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and Visibility Likelihood},
author={Kumar, Abhinav and Marks, Tim K. and Mou, Wenxuan and Wang, Ye and Jones, Michael and Cherian, Anoop and Koike-Akino, Toshiaki and Liu, Xiaoming and Feng, Chen},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2020}
}
@inproceedings{kumar2019uglli,
title={UGLLI Face Alignment: Estimating Uncertainty with Gaussian Log-Likelihood Loss},
author={Kumar, Abhinav and Marks, Tim K and Mou, Wenxuan and Feng, Chen and Liu, Xiaoming},
booktitle={ICCV Workshops on Statistical Deep Learning in Computer Vision},
year={2019}
}
Evaluation of our pre-trained models
Split | Name | Directory | LUVLi | UGLLI |
---|---|---|---|---|
1 | 300-W Split 1 | run_108 | lr-0.00002-49.pth.tar | - |
2 | 300-W Split 2 | run_109 | lr-0.00002-49.pth.tar | - |
3 | AFLW-19 | run_507 | lr-0.00002-49.pth.tar | - |
4 | WFLW | run_1005 | lr-0.00002-49.pth.tar | - |
5 | MERL-RAV (AFLW_ours) | run_5004 | lr-0.00002-49.pth.tar | - |
1 | 300-W Split 1 | run_924 | - | lr-0.00002-39.pth.tar |
2 | 300-W Split 2 | run_940 | - | lr-0.00002-39.pth.tar |
Copy the pre-trained models to the abhinav_model_dir
first. The directory structure should look like this:
./FaceAlignmentUncertainty/
|--- abhinav_model_dir/
| |--- run_108
| | |--lr-0.00002-49.pth.tar
| |
| |--- run_109
| | |--lr-0.00002-49.pth.tar
| |
| |--- run_507
| | |--lr-0.00002-49.pth.tar
| |
| |--- run_1005
| | |--lr-0.00002-49.pth.tar
| |
| |--- run_5004
| | |--lr-0.00002-49.pth.tar
| ...
Next type the following:
./scripts_evaluation.sh
In case you want to get our qualitative plots and also the transformed figures, type:
python plot/show_300W_images_overlaid_with_uncertainties.py --exp_id abhinav_model_dir/run_109_evaluate/ --laplacian
python plot/plot_uncertainties_in_transformed_space.py -i run_109_evaluate/300W_test --laplacian
python plot/plot_residual_covariance_vs_predicted_covariance.py -i run_109_evaluate --laplacian
python plot/plot_histogram_smallest_eigen_value.py -i run_109_evaluate --laplacian