blog
blog copied to clipboard
Java并发工具类之LongAdder原理总结
java.util.concurrency.atomic.LongAdder
是Java8新增的一个类,提供了原子累计值的方法。根据文档的描述其性能要优于AtomicLong
,下图是一个简单的测试对比(平台:MBP):
这里测试时基于JDK1.8进行的,AtomicLong 从Java8开始针对x86平台进行了优化,使用XADD替换了CAS操作,我们知道JUC下面提供的原子类都是基于Unsafe类实现的,并由Unsafe来提供CAS的能力。CAS (compare-and-swap)本质上是由现代CPU在硬件级实现的原子指令,允许进行无阻塞,多线程的数据操作同时兼顾了安全性以及效率。大部分情况下,CAS都能够提供不错的性能,但是在高竞争的情况下开销可能会成倍增长,具体的研究可以参考这篇文章, 我们直接看下代码:
public class AtomicLong {
public final long incrementAndGet() {
return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L;
}
}
public final class Unsafe {
public final long getAndAddLong(Object var1, long var2, long var4) {
long var6;
do {
var6 = this.getLongVolatile(var1, var2);
} while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4));
return var6;
}
}
getAndAddLong
方法会以volatile的语义去读需要自增的域的最新值,然后通过CAS去尝试更新,正常情况下会直接成功后返回,但是在高并发下可能会同时有很多线程同时尝试这个过程,也就是说线程A读到的最新值可能实际已经过期了,因此需要在while循环中不断的重试,造成很多不必要的开销,而xadd的相对来说会更高效一点,伪码如下,最重要的是下面这段代码是原子的,也就是说其他线程不能打断它的执行或者看到中间值,这条指令是在硬件级直接支持的:
function FetchAndAdd(address location, int inc) {
int value := *location
*location := value + inc
return value
}
而LongAdder的性能比上面那种还要好很多,于是就研究了一下。首先它有一个基础的值base,在发生竞争的情况下,会有一个Cell数组用于将不同线程的操作离散到不同的节点上去(会根据需要扩容,最大为CPU核数),sum()
会将所有Cell数组中的value和base累加作为返回值。核心的思想就是将AtomicLong一个value的更新压力分散到多个value中去,从而降低更新热点。
public class LongAdder extends Striped64 implements Serializable {
//...
}
LongAdder继承自Striped64
,Striped64
内部维护了一个懒加载的数组以及一个额外的base
实例域,数组的大小是2的N次方,使用每个线程Thread
内部的哈希值访问。
abstract class Striped64 extends Number {
/** Number of CPUS, to place bound on table size */
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* Table of cells. When non-null, size is a power of 2.
*/
transient volatile Cell[] cells;
@sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
}
数组的元素是Cell
类,可以看到Cell类用Contended注解修饰,这里主要是解决false sharing(伪共享的问题),不过个人认为伪共享翻译的不是很好🌶🐓,或者应该是错误的共享,比如两个volatile变量被分配到了同一个缓存行,但是这两个的更新在高并发下会竞争,比如线程A去更新变量a,线程B去更新变量b,但是这两个变量被分配到了同一个缓存行,因此会造成每个线程都去争抢缓存行的所有权,例如A获取了所有权然后执行更新这时由于volatile的语义会造成其刷新到主存,但是由于变量b也被缓存到同一个缓存行,因此就会造成cache miss,这样就会造成极大的性能损失,因此有一些类库的作者,例如JUC下面的、Disruptor等都利用了插入dummy 变量的方式,使得缓存行被其独占,比如下面这种代码:
static final class Cell {
volatile long p0, p1, p2, p3, p4, p5, p6;
volatile long value;
volatile long q0, q1, q2, q3, q4, q5, q6;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
但是这种方式毕竟不通用,例如32、64位操作系统的缓存行大小不一样,因此JAVA8中就增加了一个注@sun.misc.Contended
解用于解决这个问题,由JVM去插入这些变量,具体可以参考openjdk.java.net/jeps/142 ,但是通常来说对象是不规则的分配到内存中的,但是数组由于是连续的内存,因此可能会共享缓存行,因此这里加一个Contended注解以防cells数组发生伪共享的情况。
/**
* 底竞争下直接更新base,类似AtomicLong
* 高并发下,会将每个线程的操作hash到不同的
* cells数组中,从而将AtomicLong中更新
* 一个value的行为优化之后,分散到多个value中
* 从而降低更新热点,而需要得到当前值的时候,直接
* 将所有cell中的value与base相加即可,但是跟
* AtomicLong(compare and change -> xadd)的CAS不同,
* incrementAndGet操作及其变种
* 可以返回更新后的值,而LongAdder返回的是void
*/
public class LongAdder {
public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
/**
* 如果是第一次执行,则直接case操作base
*/
if ((as = cells) != null || !casBase(b = base, b + x)) {
boolean uncontended = true;
/**
* as数组为空(null或者size为0)
* 或者当前线程取模as数组大小为空
* 或者cas更新Cell失败
*/
if (as == null || (m = as.length - 1) < 0 ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
longAccumulate(x, null, uncontended);
}
}
public long sum() {
//通过累加base与cells数组中的value从而获得sum
Cell[] as = cells; Cell a;
long sum = base;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
}
/**
* openjdk.java.net/jeps/142
*/
@sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
abstract class Striped64 extends Number {
final void longAccumulate(long x, LongBinaryOperator fn,
boolean wasUncontended) {
int h;
if ((h = getProbe()) == 0) {
/**
* 若getProbe为0,说明需要初始化
*/
ThreadLocalRandom.current(); // force initialization
h = getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
/**
* 失败重试
*/
for (;;) {
Cell[] as; Cell a; int n; long v;
if ((as = cells) != null && (n = as.length) > 0) {
/**
* 若as数组已经初始化,(n-1) & h 即为取模操作,相对 % 效率要更高
*/
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
Cell r = new Cell(x); // Optimistically create
if (cellsBusy == 0 && casCellsBusy()) {//这里casCellsBusy的作用其实就是一个spin lock
//可能会有多个线程执行了`Cell r = new Cell(x);`,
//因此这里进行cas操作,避免线程安全的问题,同时前面在判断一次
//避免正在初始化的时其他线程再进行额外的cas操作
boolean created = false;
try { // Recheck under lock
Cell[] rs; int m, j;
//重新检查一下是否已经创建成功了
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot 现在是非空了,continue到下次循环重试
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (a.cas(v = a.value, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break;//若cas更新成功则跳出循环,否则继续重试
else if (n >= NCPU || cells != as) // 最大只能扩容到CPU数目, 或者是已经扩容成功,这里只有的本地引用as已经过期了
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (cellsBusy == 0 && casCellsBusy()) {
try {
if (cells == as) { // 扩容
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
//重新计算hash(异或)从而尝试找到下一个空的slot
h = advanceProbe(h);
}
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
boolean init = false;
try { // Initialize table
if (cells == as) {
/**
* 默认size为2
*/
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
else if (casBase(v = base, ((fn == null) ? v + x : // 若已经有另一个线程在初始化,那么尝试直接更新base
fn.applyAsLong(v, x))))
break; // Fall back on using base
}
}
final boolean casCellsBusy() {
return UNSAFE.compareAndSwapInt(this, CELLSBUSY, 0, 1);
}
static final int getProbe() {
/**
* 通过Unsafe获取Thread中threadLocalRandomProbe的值
*/
return UNSAFE.getInt(Thread.currentThread(), PROBE);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long BASE;
private static final long CELLSBUSY;
private static final long PROBE;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> sk = Striped64.class;
BASE = UNSAFE.objectFieldOffset
(sk.getDeclaredField("base"));
CELLSBUSY = UNSAFE.objectFieldOffset
(sk.getDeclaredField("cellsBusy"));
Class<?> tk = Thread.class;
//返回Field在内存中相对于对象内存地址的偏移量
PROBE = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomProbe"));
} catch (Exception e) {
throw new Error(e);
}
}
}
由于Cell相对来说比较占内存,因此这里采用懒加载的方式,在无竞争的情况下直接更新base域,在第一次发生竞争的时候(CAS失败)就会创建一个大小为2的cells数组,每次扩容都是加倍,只到达到CPU核数。同时我们知道扩容数组等行为需要只能有一个线程同时执行,因此需要一个锁,这里通过CAS更新cellsBusy来实现一个简单的spin lock。 数组访问索引是通过Thread里的threadLocalRandomProbe域取模实现的,这个域是ThreadLocalRandom更新的,cells的数组大小被限制为CPU的核数,因为即使有超过核数个线程去更新,但是每个线程也只会和一个CPU绑定,更新的时候顶多会有cpu核数个线程,因此我们只需要通过hash将不同线程的更新行为离散到不同的slot即可。 我们知道线程、线程池会被关闭或销毁,这个时候可能这个线程之前占用的slot就会变成没人用的,但我们也不能清除掉,因为一般web应用都是长时间运行的,线程通常也会动态创建、销毁,很可能一段时间后又会被其他线程占用,而对于短时间运行的,例如单元测试,清除掉有啥意义呢?
总结
总的来说,LongAdder从性能上来说要远远好于AtomicLong,一般情况下是可以直接替代AtomicLong使用的,Netty也通过一个接口封装了这两个类,在Java8下直接采用LongAdder,但是AtomicLong的一系列方法不仅仅可以自增,还可以获取更新后的值,如果是例如获取一个全局唯一的ID还是采用AtomicLong会方便一点。
参考链接
- https://blogs.oracle.com/dave/atomic-fetch-and-add-vs-compare-and-swap
- https://en.wikipedia.org/wiki/Compare-and-swap
- http://ashkrit.blogspot.com/2014/02/atomicinteger-java-7-vs-java-8.html
- https://dzone.com/articles/adventures-atomiclong
写的不错哦~,👍
我是蚂蚁金服中间件团队的鲁直,看了你的博客,都是基础技术相关的东西,不知道有没有兴趣加个微信聊下呢?我的微信是 khotyn,交个朋友也是好的,😆
@khotyn 灰常感谢! 💯
这博客写的真好,很少看到这样的博客了
@JackCaptain1015 谢谢关注👍
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
Cell r = new Cell(x); // Optimistically create
if (cellsBusy == 0 && casCellsBusy()) {
boolean created = false;
try { // Recheck under lock
Cell[] rs; int m, j;
/* 你好我想问一下为什么这边还需要检查(rs = cells) != null &&
(m = rs.length) > 0 我搜了这个类,这个类不会被释放,一旦赋值了,那么就不可能在清空,那么也就是说如果最外面的那个if满足了,到了这里一定不会为null,但是代码既然这样写了,说明有可能为null,不知道是否知道在什么条件下
*/
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot 现在是非空了,continue到下次循环重试
}
}
collide = false;
}
@plx927 thanks
讲得很好,受教
@crystalcyw 多谢!