SOON
SOON copied to clipboard
Dataset and baseline for Scenario Oriented Object Navigation (SOON)
Code and Data for Paper "SOON: Scenario Oriented Object Navigation with Graph-based Exploration"
Environment Installation
Download Room-to-Room navigation data:
bash ./tasks/R2R/data/download.sh
Download image features for environments:
mkdir img_features
wget https://www.dropbox.com/s/715bbj8yjz32ekf/ResNet-152-imagenet.zip -P img_features/
cd img_features
unzip ResNet-152-imagenet.zip
Python requirements: Need python3.6 (python 3.5 should be OK since I removed the allennlp dependencies)
pip install -r python_requirements.txt
Install Matterport3D simulators:
git submodule update --init --recursive
sudo apt-get install libjsoncpp-dev libepoxy-dev libglm-dev libosmesa6 libosmesa6-dev libglew-dev
mkdir build && cd build
cmake -DEGL_RENDERING=ON ..
make -j8
Code
Speaker Training
bash run/speaker.bash 0
0 is the id of GPU. It will train the speaker and save the snapshot under snap/speaker/
Agent Training
python3.6 -u r2r_src/train.py --dataset SOON --maxAction 20 --log_every 500 --rl_ml_weight 1 --det_loss
Evaluation
sh run/eval.sh