Super-Resolution_CNN-PyTorch
Super-Resolution_CNN-PyTorch copied to clipboard
Implementation of 'Image Super-Resolution using Deep Convolutional Network'
[PyTorch] Super-Resolution CNN
PyTorch implementation of 'Image Super-Resolution using Deep Convolutional Network'. TensorFlow version is also provided in Related Repository.
Architecture
The architecture of the Super-Resolution Network (SRCNN).
Results


Reconstructed image in each iteration (1k, 10k, 100k iterations).


Comparison between the input (Bicubic Interpolated), reconstructed image (by SRCNN), and target (High-Resolution) image.
Requirements
- Python 3.6.8
- PyTorch 1.2.0
- Numpy 1.14.0
- Matplotlib 3.1.1
Reference
[1] Image Super-Resolution Using Deep Convolutional Networks, Chao Dong et al., https://ieeexplore.ieee.org/abstract/document/7115171/
[2] Urban 100 dataset, Huang et al., https://sites.google.com/site/jbhuang0604/publications/struct_sr
First commit: 07.October.2018