MSNet
MSNet copied to clipboard
(MICCAI 2021) Automatic Polyp Segmentation via Multi-scale Subtraction Network
MSNet&M2SNet
MSNet: Automatic Polyp Segmentation via Multi-scale Subtraction Network
Xiaoqi Zhao, Lihe Zhang, Huchuan Lu
⭐ arXiv »
M2SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation
Xiaoqi Zhao, Hongpeng Jia, Youwei Pang, Long Lv, Feng Tian, Lihe Zhang, Weibing Sun, Huchuan Lu
⭐ arXiv »
- Official repository of "Automatic Polyp Segmentation via Multi-scale Subtraction Network" MICCAI-2021.
- Official repository of "M2SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation".
- :boom: We won the second place (2/100) in the MICCAI 2022 Challenge: Glaucoma Oct Analysis and Layer Segmentation (GOALS).
Datasets
- Image Polyp Segmentation: (training dataset) Google Drive / BaiduYunPan(342v); (testing dataset) Google Drive / BaiduYunPan(4e10)
- Video Polyp Segmentation: (training dataset) Google Drive / BaiduYunPan(4b45); (testing dataset) Google Drive / BaiduYunPan(ki4a)
- COVID-19 Lung Infection: (training dataset) Google Drive / BaiduYunPan(uoiy); (testing dataset) Google Drive / BaiduYunPan(r867)
- Breast Ultrasound Segmentation: Google Drive / BaiduYunPan(409p)
Results
- MSNet: Google Drive / BaiduYunPan(j3i8)
- M2SNet: Google Drive / BaiduYunPan(a60m)
Trained Model
- You can download the trained MSNet model at Google Drive / BaiduYunPan(ps6e).
- You can download the trained M2SNet model at Google Drive / BaiduYunPan(5vo3).
- You can download Res2Net weights at Google Drive / BaiduYunPan(w46l)
Highlight
Novel Segmentation Architectures
Efficient Intra-Layer Multi-scale Subtraction Design
Efficient Inter-Layer Multi-scale Subtraction Structure
Training-free Loss Network
Low FLOPs (comparisons under the Res2Net-50 backbone)
Prerequisites
Training/Inference/Testing
- set the cfg in train.py:
Dataset.Config(datapath='', savepath='', mode='train', batch=16, lr=0.05, momen=0.9, decay=5e-4, epoch='')
%the number of training epochs settings in the polyp segmentation, COVID-19 Lung Infection, breast tumor segmentation and OCT layer segmentation are 50, 200, 100 and 100, respectively.
python train.py
- Run prediction_rgb.py (can generate the predicted maps)
- Run test_score.py (support 10 binary segmentation evaluation metrics: MAE, maxF, avgF, wfm, Sm, Em, M_dice, M_iou, Ber, Acc)
TODO LIST
-
[ ] 3D verison MSNet training.
-
[ ] Support different backbones (VGGNet, MobileNet, ResNet, Swin, etc.).
-
[ ] Diverse Medical Image Segmentation
- [x] Polyp
- [x] COVID-19 Lung Infection
- [x] Breast tumor
- [x] OCT Layer
- [ ] Prostate
- [ ] Cell Nuclei
- [ ] Liver
- [ ] Retinal Vessel
- [ ] Skin Lesion
- [ ] Lung
- [ ] Pancreas
- [ ] Hippocampus
- [ ] Heart
- [ ] BrainTumour
BibTex
@inproceedings{MSNet,
title={Automatic polyp segmentation via multi-scale subtraction network},
author={Zhao, Xiaoqi and Zhang, Lihe and Lu, Huchuan},
booktitle={MICCAI},
pages={120--130},
year={2021},
organization={Springer}
}
@article{M2SNet,
title={M $\^{}$\{$2$\}$ $ SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation},
author={Zhao, Xiaoqi and Jia, Hongpeng and Pang, Youwei and Lv, Long and Tian, Feng and Zhang, Lihe and Sun, Weibing and Lu, Huchuan},
journal={arXiv preprint arXiv:2303.10894},
year={2023}
}